burst emission
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 9)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Ioulia Florou ◽  
Apostolos Mastichiadis ◽  
Maria Petropoulou

Author(s):  
M. Toffano ◽  
G. Ghirlanda ◽  
L. Nava ◽  
G. Ghisellini ◽  
M. E. Ravasio ◽  
...  

2021 ◽  
Vol 2021 (05) ◽  
pp. 034
Author(s):  
Tetyana Pitik ◽  
Irene Tamborra ◽  
Maria Petropoulou

2020 ◽  
Vol 644 ◽  
pp. A90
Author(s):  
A. Koukras ◽  
C. Marqué ◽  
C. Downs ◽  
L. Dolla

Context. EUV (EIT) waves are wavelike disturbances of enhanced extreme ultraviolet (EUV) emission that propagate away from an eruptive active region across the solar disk. Recent years have seen much debate over their nature, with three main interpretations: the fast-mode magneto-hydrodynamic (MHD) wave, the apparent wave (reconfiguration of the magnetic field), and the hybrid wave (combination of the previous two). Aims. By studying the kinematics of EUV waves and their connection with type II radio bursts, we aim to examine the capability of the fast-mode interpretation to explain the observations, and to constrain the source locations of the type II radio burst emission. Methods. We propagate a fast-mode MHD wave numerically using a ray-tracing method and the WKB (Wentzel-Kramers-Brillouin) approximation. The wave is propagated in a static corona output by a global 3D MHD Coronal Model, which provides density, temperature, and Alfvén speed in the undisturbed coronal medium (before the eruption). We then compare the propagation of the computed wave front with the observed wave in EUV images (PROBA2/SWAP, SDO/AIA). Lastly, we use the frequency drift of the type II radio bursts to track the propagating shock wave, compare it with the simulated wave front at the same instant, and identify the wave vectors that best match the plasma density deduced from the radio emission. We apply this methodology for two EUV waves observed during SOL2017-04-03T14:20:00 and SOL2017-09-12T07:25:00. Results. The simulated wave front displays a good qualitative match with the observations for both events. Type II radio burst emission sources are tracked on the wave front all along its propagation. The wave vectors at the ray-path points that are characterized as sources of the type II radio burst emission are quasi-perpendicular to the magnetic field. Conclusions. We show that a simple ray-tracing model of the EUV wave is able to reproduce the observations and to provide insight into the physics of such waves. We provide supporting evidence that they are likely fast-mode MHD waves. We also narrow down the source region of the radio burst emission and show that different parts of the wave front are responsible for the type II radio burst emission at different times of the eruptive event.


2020 ◽  
Vol 499 (3) ◽  
pp. 4479-4489
Author(s):  
J Speicher ◽  
D R Ballantyne ◽  
J Malzac

ABSTRACT Although accretion disc coronae appear to be common in many accreting systems, their fundamental properties remain insufficiently understood. Recent work suggests that Type I X-ray bursts from accreting neutron stars provide an opportunity to probe the characteristics of coronae. Several studies have observed hard X-ray shortages from the accretion disc during an X-ray burst implying strong coronal cooling by burst photons. Here, we use the plasma emission code eqpair to study the impact of X-ray bursts on coronae, and how the coronal and burst properties affect the coronal electron temperatures and emitted spectra. Assuming a constant accretion rate during the burst, our simulations show that soft photons can cool coronal electrons by a factor of ≳ 10 and cause a reduction of emission in the 30–50 keV band to $\lesssim 1{{\ \rm per\ cent}}$ of the pre-burst emission. This hard X-ray drop is intensified when the coronal optical depth and aspect ratio is increased. In contrast, depending on the properties of the burst and corona, the emission in the 8–24 keV band can either increase, by a factor of ≳ 20, or decrease, down to $\lesssim 1{{\ \rm per\ cent}}$ of the pre-burst emission. An increasing accretion rate during the X-ray burst reduces the coronal cooling effects and the electron temperature drop can be mitigated by $\gtrsim 60{{\ \rm per\ cent}}$. These results indicate that changes of the hard X-ray flux during an X-ray burst probe the geometrical properties of the corona.


2020 ◽  
Vol 891 (2) ◽  
pp. L38 ◽  
Author(s):  
Hyerin Cho ◽  
Jean-Pierre Macquart ◽  
Ryan M. Shannon ◽  
Adam T. Deller ◽  
Ian S. Morrison ◽  
...  

2020 ◽  
Vol 634 ◽  
pp. A58 ◽  
Author(s):  
C. Sánchez-Fernández ◽  
J. J. E. Kajava ◽  
J. Poutanen ◽  
E. Kuulkers ◽  
V. F. Suleimanov

Type I X-ray bursts in GS 1826–24, and in several other systems, may induce cooling of the hot inner accretion flow that surrounds the bursting neutron star. Given that GS 1826–24 remained persistently in the hard state over the period 2003–2008 and presented regular bursting properties, we stacked the spectra of the X-ray bursts detected by INTEGRAL (JEM-X and ISGRI) and XMM-Newton (RGS) during that period to study the effect of the burst photons on the properties of the Comptonizing medium. The extended energy range provided by these instruments allows the simultaneous observation of the burst and persistent emission spectra. We detect an overall change in the shape of the persistent emission spectrum in response to the burst photon shower. For the first time, we observe simultaneously a drop in the hard X-ray emission, together with a soft X-ray excess with respect to the burst blackbody emission. The hard X-ray drop can be explained by burst-induced coronal cooling, while the bulk of the soft X-ray excess can be described by fitting the burst emission with an atmosphere model, instead of a simple blackbody model. Traditionally, the persistent emission was assumed to be invariant during X-ray bursts, and more recently to change only in normalization but not in spectral shape; the observed change in the persistent emission level during X-ray bursts may thus trigger the revision of existing neutron star mass-radius constraints, as the derived values rely on the assumption that the persistent emission does not change during X-ray bursts. The traditional burst fitting technique leads to up to a 10% overestimation of the bolometric burst flux in GS 1826–24, which significantly hampers the comparisons of the KEPLER and MESA model against this “textbook burster”.


2019 ◽  
Vol 882 (1) ◽  
pp. L9 ◽  
Author(s):  
Yogesh Maan ◽  
Bhal Chandra Joshi ◽  
Mayuresh P. Surnis ◽  
Manjari Bagchi ◽  
P. K. Manoharan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document