applied strain
Recently Published Documents


TOTAL DOCUMENTS

224
(FIVE YEARS 53)

H-INDEX

21
(FIVE YEARS 3)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yichi Song ◽  
Doneill J. Magmanlac ◽  
Vito L. Tagarielli

AbstractWe propose and assess a procedure to measure the damage evolution in solids as a function of the applied strain, by conducting stiffness-sensing mechanical tests. These tests consist in superimposing to a monotonically increasing applied strain numerous, low-amplitude unloading/reloading cycles, and extracting the current stiffness of the specimens from the slope of the stress–strain curve in each of the unloading/reloading cycles. The technique is applied to a set of polymeric and metallic solids with a wide range of stiffness, including CFRP laminates loaded through the thickness, epoxy resins, injection-moulded and 3D printed PLA and sintered Ti powders. The tests reveal that, for all the materials tested, damage starts developing at the very early stages of deformation, during what is commonly considered an elastic response. We show that the test method is effective and allows enriching the data extracted from conventional mechanical tests, for potential use in data-driven constitutive models. We also show that the measurements are consistent with the results of acoustic and resistive measurements, and that the method can be used to quantify the viscous response of the materials tested.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6666
Author(s):  
Daozhi Li ◽  
Xiaoyang Ma ◽  
Hongwei Chu ◽  
Ying Li ◽  
Shengzhi Zhao ◽  
...  

Based on density functional theory, we have systematically investigated the geometric, magnetic, and electronic properties of fluorographene with three types of vacancy defects. With uneven sublattice, the partial defect structures are significantly spin-polarized and present midgap electronic states. The magnetic moment is mainly contributed by the adjacent C atoms of vacancy defects. Furthermore, the strain dependence of the bandgap is analyzed and shows a linear trend with applied strain. This defect-induced tunable narrow bandgap material has great potential in electronic devices and spintronics applications.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2692
Author(s):  
Jawad El Hamdaou ◽  
Mohamed El-Yadri ◽  
Mohamed Farkous ◽  
Mohamed Kria ◽  
Maykel Courel ◽  
...  

Following the chronological stages of calculations imposed by the WIEN2K code, we have performed a series of density functional theory calculations, from which we were able to study the effect of strain on the kesterite structures for two quaternary semiconductor compounds Cu2ZnGeS4 and Cu2ZnGeSe4. Remarkable changes were found in the electronic and optical properties of these two materials during the application of biaxial strain. Indeed, the band gap energy of both materials decreases from the equilibrium state, and the applied strain is more pronounced. The main optical features are also related to the applied strain. Notably, we found that the energies of the peaks present in the dielectric function spectra are slightly shifted towards low energies with strain, leading to significant refraction and extinction index responses. The obtained results can be used to reinforce the candidature of Cu2ZnGeX4(X = S, Se) in the field of photovoltaic devices.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1601
Author(s):  
Zeyu Ma ◽  
Wei Wu ◽  
Pengxiong Zhao ◽  
Yong Dan

The corrosion behavior of X80 steel in a near-neutral soil-simulated solution under various DC stray currents and applied strains was investigated using electrochemical measurements (open circuit potential, linear polarization, and electrochemical impedance spectroscopy) and surface analysis techniques. Our results show that a DC stray current has a substantially greater effect on steel corrosion compared to applied strain. However, strain could slow down the corrosion rate in specific conditions by affecting the composition of corrosion products and the structure of the corrosion scale on the surface of the steel. Although the porosity of the corrosion scale of steel without an applied strain will increase with increasing DC currents, once strain is applied, the corrosion scale will become denser. Furthermore, both DC currents and strain can promote steel pitting, and the number and size of pitting holes will increase significantly with an increase in current densities.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2468
Author(s):  
Tianyu Chen ◽  
Jianjun Li

Extensive experiments have shown that gradient nano-grained metals have outstanding synergy of strength and ductility. However, the deformation mechanisms of gradient metals are still not fully understood due to their complicated gradient microstructure. One of the difficulties is the accurate description of the deformation of the nanocrystalline surface layer of the gradient metals. Recent experiments with a closer inspection into the surface morphology of the gradient metals reported that shear bands (strain localization) occur at the surface of the materials even under a very small, applied strain, which is in contrast to previously suggested uniform deformation. Here, a dislocation density-based computational model is developed to investigate the shear band evolution in gradient Cu to overcome the above difficulty and to clarify the above debate. The Voronoi polygon is used to establish the irregular grain structure, which has a gradual increase in grain size from the material surface to the interior. It was found that the shear band occurs at a small applied strain in the surface region of the gradient structure, and multiple shear bands are gradually formed with increasing applied load. The early appearance of shear banding and the formation of abundant shear bands resulted from the constraint of the coarse-grained interior. The number of shear bands and the uniform elongation of the gradient material were positively related, both of which increased with decreasing grain size distribution index and gradient layer thickness or increasing surface grain size. The findings are in good agreement with recent experimental observations in terms of stress-strain responses and shear band evolution. We conclude that the enhanced ductility of gradient metals originated from the gradient deformation-induced stable shear band evolution during tension.


Author(s):  
Chandra Shekhar Maurya ◽  
Chiranjit Sarkar

This study investigates dynamic mechanical properties and creep and recovery behaviors of disc-shaped magnetic Fe3O4 nanoparticles with carbonyl iron (CI) flake-shaped microparticles in water-based MR fluid. The experimental study is performed using a parallel plate rheometer. Dynamic performance and creep and recovery behaviors help understand deformation mechanism for its practical applications in MR devices like seismic vibration control, active dampers, earthquake dampers, etc., under applied strain, and stress levels. The oscillatory experiment reveals a transition from viscoelastic-to-viscous behavior at the critical strain of 0.1%. The storage modulus [Formula: see text] of CI/Fe3O4 MR fluid showed a stable plateau region over the small strain area and storage modulus [Formula: see text] independent of strain amplitude. The frequency experiment demonstrated that storage moduli [Formula: see text] exhibit elastic response and stable plateau region over the complete external frequency range, suggesting the distinguished solid-like behavior of the MR fluid. Creep and recovery experiments showed that fluid acts as a linear viscoelastic material at lower stress levels. As the stress levels increase, the contribution of retardation strain and viscous strain decreases, and it acts like nonlinear viscoelastic material. In summary, this work is expected to obtain MR fluid results for application in MR devices under applied strain, frequencies, and constant stress levels.


2021 ◽  
pp. 2150399
Author(s):  
Elizaveta M. Mochalova ◽  
Alexandra A. Kachina

In this paper, we study the effect of the axial deformation of carbon nanotubes in the zigzag and armchair directions on the stability of the interface between hydrogenated and non-hydrogenated regions. We analyze the specific energy of this interface as a function of the axial strain. We found that the clear interface can be obtained at a wider temperature range due to tube stretching. The energy barriers characterizing the process of hydrogen migration from the hydrogenated region of the nanotube to the pristine tube are calculated. It is concluded that the tube deformation significantly affects the stability of the system. For some tubes applied strain can qualitatively change the regularity of hydrogenation, changing the sign of the interface energy.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Leijun Hu ◽  
Liwen Sheng ◽  
Jisong Yan ◽  
Ligong Li ◽  
Ming Yuan ◽  
...  

A multiparameter Brillouin fiber-optic sensor for distributed strain and temperature information measuring based on spontaneous scattering in a common communication optical fiber (the G. 652. D commercial fiber) is presented and experimentally demonstrated. Benefiting from the difference of the temperature and strain sensitivity from different Brillouin peaks with different acoustic modes, our proposed sensing configuration can be used to distinguish ambient temperature and applied strain at the same time, which is an excellent candidate to address the problem of cross-sensitivity in the classical Brillouin system. In the experimental section, using a 21.8 km sensing length of communication optical fiber, a temperature accuracy of 1.13°C and a strain accuracy of 21.46 με are obtained simultaneously. Considering the performance we achieved now, the proposed innovation and experimental setup will have some potential applications in the field of fiber sensors.


Author(s):  
James N. Grima-Cornish ◽  
Joseph N. Grima ◽  
Daphne Attard

AbstractThe Poisson’s ratio, a property which quantifies the changes in thickness when a material is stretched and compressed, can be determined as the negative of the transverse strain over the applied strain. In the scientific literature, there are various ways how strain may be defined and the actual definition used could result in a different Poisson’s ratio being computed. This paper will look in more detail at this by comparing the more commonly used forms of strain and the Poisson’s ratio that is computable from them. More specifically, an attempt is made to assess through examples on the usefulness of the various formulations to properly describe what can actually be observed, thus providing a clearer picture of which form of Poisson’s ratio should be used in analytical modelling.


2021 ◽  
Author(s):  
Fengxian Ma ◽  
Yalong Jiao ◽  
Weikang Wu ◽  
Ying Liu ◽  
Shengyuan A. Yang ◽  
...  

<p></p><p>If one strains a material, most materials shrink normal to the direction of applied strain. Similarly, if a material is compressed, it will expand in the direction orthogonal to the pressure. Few materials, those of negative Poisson ratio, show the opposite behavior. Here, we show an unprecedented feature, a material that expands normal to the direction of stress, regardless if it is strained or compressed. Such behavior, namely, half-auxeticity, is demonstrated for a borophene sheet stabilized by decorating Pd atoms. We explore Pd-decorated borophene, identify three stable phases of which one has this peculiar property of half auxeticity. After carefully analyzing stability, mechanical and electronic properties we explore the origin of this very uncommon behavior and identify it as a structural feature that may also be employed to design further 2D nanomaterials.</p><br><p></p>


Sign in / Sign up

Export Citation Format

Share Document