chloroplast genome
Recently Published Documents


TOTAL DOCUMENTS

4045
(FIVE YEARS 2602)

H-INDEX

81
(FIVE YEARS 12)

2022 ◽  
Author(s):  
Ruyou Deng ◽  
Shujin Ding ◽  
Sujie Wang ◽  
Hanyao Zhang

Abstract Ardisia japonica(Thunb)Blume is a small shrub or sub-shrub of the genus Taurus in the Taurus family. The whole plant and root of A. japonica are used for medicinal purposes. It is a common Chinese herbal medicine and a common flower. To study its complete chloroplast genome, we collected leaves and obtained chloroplast genome information through next-generation sequencing. The results showed that the length of the genome is 155,996 bp, and the GC content ratio is 37.0%. The large single-copy region (LSC) is 86803 bp, the small single-copy region (SSC) is 18080 bp, and the inverted repeat region (IR) is 25507 bp. The chloroplast genome encodes 130 genes, including 85 protein genes, 8 rRNA genes, and 37tRNA genes. By analyzing the phylogeny of A. japonica, it is found that A. japonica and other Ardisia species are closely related.


2022 ◽  
Vol 12 ◽  
Author(s):  
Qian Yang ◽  
Gao-Fei Fu ◽  
Zhi-Qiang Wu ◽  
Li Li ◽  
Jian-Li Zhao ◽  
...  

Chloroplasts are critical to plant survival and adaptive evolution. The comparison of chloroplast genomes could provide insight into the adaptive evolution of closely related species. To identify potential adaptive evolution in the chloroplast genomes of four montane Zingiberaceae taxa (Cautleya, Roscoea, Rhynchanthus, and Pommereschea) that inhabit distinct habitats in the mountains of Yunnan, China, the nucleotide sequences of 13 complete chloroplast genomes, including five newly sequenced species, were characterized and compared. The five newly sequenced chloroplast genomes (162,878–163,831 bp) possessed typical quadripartite structures, which included a large single copy (LSC) region, a small single copy (SSC) region, and a pair of inverted repeat regions (IRa and IRb), and even though the structure was highly conserved among the 13 taxa, one of the rps19 genes was absent in Cautleya, possibly due to expansion of the LSC region. Positive selection of rpoA and ycf2 suggests that these montane species have experienced adaptive evolution to habitats with different sunlight intensities and that adaptation related to the chloroplast genome has played an important role in the evolution of Zingiberaceae taxa.


Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 113
Author(s):  
Carla L. Saldaña ◽  
Pedro Rodriguez-Grados ◽  
Julio C. Chávez-Galarza ◽  
Shefferson Feijoo ◽  
Juan Carlos Guerrero-Abad ◽  
...  

Capirona (Calycophyllum spruceanum Benth.) belongs to subfamily Ixoroideae, one of the major lineages in the Rubiaceae family, and is an important timber tree. It originated in the Amazon Basin and has widespread distribution in Bolivia, Peru, Colombia, and Brazil. In this study, we obtained the first complete chloroplast (cp) genome of capirona from the department of Madre de Dios located in the Peruvian Amazon. High-quality genomic DNA was used to construct libraries. Pair-end clean reads were obtained by PE 150 library and the Illumina HiSeq 2500 platform. The complete cp genome of C. spruceanum has a 154,480 bp in length with typical quadripartite structure, containing a large single copy (LSC) region (84,813 bp) and a small single-copy (SSC) region (18,101 bp), separated by two inverted repeat (IR) regions (25,783 bp). The annotation of C. spruceanum cp genome predicted 87 protein-coding genes (CDS), 8 ribosomal RNA (rRNA) genes, 37 transfer RNA (tRNA) genes, and one pseudogene. A total of 41 simple sequence repeats (SSR) of this cp genome were divided into mononucleotides (29), dinucleotides (5), trinucleotides (3), and tetranucleotides (4). Most of these repeats were distributed in the noncoding regions. Whole chloroplast genome comparison with the other six Ixoroideae species revealed that the small single copy and large single copy regions showed more divergence than inverted regions. Finally, phylogenetic analyses resolved that C. spruceanum is a sister species to Emmenopterys henryi and confirms its position within the subfamily Ixoroideae. This study reports for the first time the genome organization, gene content, and structural features of the chloroplast genome of C. spruceanum, providing valuable information for genetic and evolutionary studies in the genus Calycophyllum and beyond.


BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Jiaxin Yang ◽  
Guoxiong Hu ◽  
Guangwan Hu

Abstract Background Handeliodendron Rehder and Eurycorymbus Hand.-Mazz. are the monotypic genera in the Sapindaceae family. The phylogenetic relationship of these endangered species Handeliodendron bodinieri (Lévl.) Rehd. and Eurycorymbus cavaleriei (Lévl.) Rehd. et Hand.-Mazz. with other members of Sapindaceae s.l. is not well resolved. A previous study concluded that the genus Aesculus might be paraphyletic because Handeliodendron was nested within it based on small DNA fragments. Thus, their chloroplast genomic information and comparative genomic analysis with other Sapindaceae species are necessary and crucial to understand the circumscription and plastome evolution of this family. Results The chloroplast genome sizes of Handeliodendron bodinieri and Eurycorymbus cavaleriei are 151,271 and 158,690 bp, respectively. Results showed that a total of 114 unique genes were annotated in H. bodinieri and E. cavaleriei, and the ycf1 gene contained abundant SSRs in both genomes. Comparative analysis revealed that gene content, PCGs, and total GC content were remarkably similar or identical within 13 genera from Sapindaceae, and the chloroplast genome size of four genera was generally smaller within the family, including Acer, Dipteronia, Aesculus, and Handeliodendron. IR boundaries of the H. bodinieri showed a significant contraction, whereas it presented a notable expansion in E. cavaleriei cp genome. Ycf1, ndhC-trnV-UAC, and rpl32-trnL-UAG-ccsA were remarkably divergent regions in the Sapindaceae species. Analysis of selection pressure showed that there are a few positively selected genes. Phylogenetic analysis based on different datasets, including whole chloroplast genome sequences, coding sequences, large single-copy, small single-copy, and inverted repeat regions, consistently demonstrated that H. bodinieri was sister to the clade consisting of Aesculus chinensis and A. wangii and strongly support Eurycorymbus cavaleriei as sister to Dodonaea viscosa. Conclusion This study revealed that the cp genome size of the Hippocastanoideae was generally smaller compared to the other subfamilies within Sapindaceae, and three highly divergent regions could be used as the specific DNA barcodes within Sapindaceae. Phylogenetic results strongly support that the subdivision of four subfamilies within Sapindaceae, and Handeliodendron is not nested within the genus Aesculus.


2022 ◽  
Vol 7 (1) ◽  
pp. 191-193
Author(s):  
Shikai Guan ◽  
Qian Song ◽  
Jinye Zhou ◽  
Yun Liu ◽  
Haixia Yan ◽  
...  

2022 ◽  
Vol 7 (1) ◽  
pp. 164-166
Author(s):  
Jianhui Li ◽  
Jiawen Yan ◽  
Lin Yu ◽  
Wenfu Bai ◽  
Dongling Nie ◽  
...  

2022 ◽  
Vol 7 (1) ◽  
pp. 182-184
Author(s):  
Shuifei Chen ◽  
Wenwen Zhang ◽  
Yao Li ◽  
Xiaomin Ge ◽  
Xu Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document