agc kinases
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 15)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Stuart Sullivan ◽  
Thomas Waksman ◽  
Dimitra Paliogianni ◽  
Louise Henderson ◽  
Melanie Lütkemeyer ◽  
...  

AbstractPolarity underlies all directional growth responses in plants including growth towards the light (phototropism). The plasma-membrane associated protein, NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) is a key determinant of phototropic growth which is regulated by phototropin (phot) AGC kinases. Here we demonstrate that NPH3 is directly phosphorylated by phot1 within a conserved C-terminal consensus sequence (RxS) that is necessary to promote phototropism and petiole positioning in Arabidopsis. RxS phosphorylation also triggers 14-3-3 binding combined with changes in NPH3 phosphorylation and localisation status. Mutants of NPH3 that are unable to bind or constitutively bind 14-3-3 s show compromised functionality consistent with a model where phototropic curvature is established by signalling outputs arising from a gradient of NPH3 RxS phosphorylation across the stem. Our findings therefore establish that NPH3/RPT2-Like (NRL) proteins are phosphorylation targets for plant AGC kinases. Moreover, RxS phosphorylation is conserved in other members of the NRL family, suggesting a common mechanism of regulating plant growth to the prevailing light environment.


2021 ◽  
pp. MOLPHARM-MR-2021-000310
Author(s):  
Timothy R. Baffi ◽  
Alexandra C. Newton
Keyword(s):  

2021 ◽  
Vol 15 ◽  
Author(s):  
Guokun Zhou ◽  
Xiang-ming Zha

Persistent acidosis occurs in ischemia and multiple neurological diseases. In previous studies, acidic stimulation leads to rapid increase in intracellular calcium in neurons. However, it remains largely unclear how a prolonged acidosis alters neuronal signaling. In our previous study, we found that GPR68-mediated PKC activities are protective against acidosis-induced injury in cortical slices. Here, we first asked whether the same principle holds true in organotypic hippocampal slices. Our data showed that 1-h pH 6 induced PKC phosphorylation in a GPR68-dependent manner. Go6983, a PKC inhibitor worsened acidosis-induced neuronal injury in wild type (WT) but had no effect in GPR68−/− slices. Next, to gain greater insights into acid signaling in brain tissue, we treated organotypic hippocampal slices with pH 6 for 1-h and performed a kinome profiling analysis by Western blot. Acidosis had little effect on cyclin-dependent kinase (CDK) or casein kinase 2 activity, two members of the CMGC family, or Ataxia telangiectasia mutated (ATM)/ATM and RAD3-related (ATR) activity, but reduced the phosphorylation of MAPK/CDK substrates. In contrast, acidosis induced the activation of CaMKIIα, PKA, and Akt. Besides these serine/threonine kinases, acidosis also induced tyrosine phosphorylation. Since GPR68 is widely expressed in brain neurons, we asked whether GPR68 contributes to acidosis-induced signaling. Deleting GPR68 had no effect on acidosis-induced CaMKII phosphorylation, attenuated that of phospho-Akt and phospho-PKA substrates, while abolishing acidosis-induced tyrosine phosphorylation. These data demonstrate that prolonged acidosis activates a network of signaling cascades, mediated by AGC kinases, CaMKII, and tyrosine kinases. GPR68 is the primary mediator for acidosis-induced activation of PKC and tyrosine phosphorylation, while both GPR68-dependent and -independent mechanisms contribute to the activation of PKA and Akt.


2021 ◽  
Vol 14 (678) ◽  
pp. eabe4509
Author(s):  
Timothy R. Baffi ◽  
Gema Lordén ◽  
Jacob M. Wozniak ◽  
Andreas Feichtner ◽  
Wayland Yeung ◽  
...  

The complex mTORC2 is accepted to be the kinase that controls the phosphorylation of the hydrophobic motif, a key regulatory switch for AGC kinases, although whether mTOR directly phosphorylates this motif remains controversial. Here, we identified an mTOR-mediated phosphorylation site that we termed the TOR interaction motif (TIM; F-x3-F-pT), which controls the phosphorylation of the hydrophobic motif of PKC and Akt and the activity of these kinases. The TIM is invariant in mTORC2-dependent AGC kinases, is evolutionarily conserved, and coevolved with mTORC2 components. Mutation of this motif in Akt1 and PKCβII abolished cellular kinase activity by impairing activation loop and hydrophobic motif phosphorylation. mTORC2 directly phosphorylated the PKC TIM in vitro, and this phosphorylation event was detected in mouse brain. Overexpression of PDK1 in mTORC2-deficient cells rescued hydrophobic motif phosphorylation of PKC and Akt by a mechanism dependent on their intrinsic catalytic activity, revealing that mTORC2 facilitates the PDK1 phosphorylation step, which, in turn, enables autophosphorylation. Structural analysis revealed that PKC homodimerization is driven by a TIM-containing helix, and biophysical proximity assays showed that newly synthesized, unphosphorylated PKC dimerizes in cells. Furthermore, disruption of the dimer interface by stapled peptides promoted hydrophobic motif phosphorylation. Our data support a model in which mTORC2 relieves nascent PKC dimerization through TIM phosphorylation, recruiting PDK1 to phosphorylate the activation loop and triggering intramolecular hydrophobic motif autophosphorylation. Identification of TIM phosphorylation and its role in the regulation of PKC provides the basis for AGC kinase regulation by mTORC2.


2021 ◽  
Author(s):  
Stuart Sullivan ◽  
Thomas Waksman ◽  
Louise Henderson ◽  
Dimitra Paliogianni ◽  
Melanie Lütkemeyer ◽  
...  

Polarity underlies all plant physiology and directional growth responses such as phototropism. Yet, our understanding of how plant tropic responses are established is far from complete. The plasma-membrane associated BTB-containing protein, NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) is a key determinant of phototropic growth which is regulated by AGC kinases known as the phototropins (phots). However, the mechanism by which phots initiate phototropic signalling via NPH3, and other NPH3/RPT2-like (NRL) members, has remained unresolved. Here we demonstrate that NPH3 is directly phosphorylated by phot1 both in vitro and in vivo. Light-dependent phosphorylation within a conserved consensus sequence (RxS) located at the extreme C-terminus of NPH3 is necessary to promote its functionality for phototropism and petiole positioning in Arabidopsis. Phosphorylation of this region by phot1 also triggers 14-3-3 binding combined with changes in NPH3 phosphorylation and localisation status. Seedlings expressing mutants of NPH3 that are unable to bind or constitutively bind 14-3-3s show compromised functionality that is consistent with a model where signalling outputs arising from a gradient in NPH3 RxS phosphorylation/localisation across the stem are a major contributor to phototropic responsiveness. Our current findings provide further evidence that 14-3-3 proteins are instrumental components regulating auxin-dependent growth and show for the first time that NRL proteins are direct phosphorylation targets for plant AGC kinases. Moreover, the C-terminal phosphorylation site/14-3-3-binding motif of NPH3 is conserved in several members of the NRL family, suggesting a common mechanism of regulation.


Author(s):  
Matouš Glanc ◽  
Kasper Van Gelderen ◽  
Lukas Hoermayer ◽  
Shutang Tan ◽  
Satoshi Naramoto ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael R. Oliver ◽  
Christopher R. Horne ◽  
Safal Shrestha ◽  
Jeremy R. Keown ◽  
Lung-Yu Liang ◽  
...  

AbstractThe life cycle of Baculoviridae family insect viruses depends on the viral protein kinase, PK-1, to phosphorylate the regulatory protein, p6.9, to induce baculoviral genome release. Here, we report the crystal structure of Cydia pomenella granulovirus PK-1, which, owing to its likely ancestral origin among host cell AGC kinases, exhibits a eukaryotic protein kinase fold. PK-1 occurs as a rigid dimer, where an antiparallel arrangement of the αC helices at the dimer core stabilizes PK-1 in a closed, active conformation. Dimerization is facilitated by C-lobe:C-lobe and N-lobe:N-lobe interactions between protomers, including the domain-swapping of an N-terminal helix that crowns a contiguous β-sheet formed by the two N-lobes. PK-1 retains a dimeric conformation in solution, which is crucial for catalytic activity. Our studies raise the prospect that parallel, side-to-side dimeric arrangements that lock kinase domains in a catalytically-active conformation could function more broadly as a regulatory mechanism among eukaryotic protein kinases.


2020 ◽  
Author(s):  
Peng‐Min Zhou ◽  
Yan Liang ◽  
Juan Mei ◽  
Hong‐Ze Liao ◽  
Pu Wang ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242819
Author(s):  
Guido Plotz ◽  
Laura A. Lopez-Garcia ◽  
Angela Brieger ◽  
Stefan Zeuzem ◽  
Ricardo M. Biondi

Three AKT serine/threonine kinase isoforms (AKT1/AKT2/AKT3) mediate proliferation, metabolism, differentiation and anti-apoptotic signals. AKT isoforms are activated downstream of PI3-kinase and also by PI3-kinase independent mechanisms. Mutations in the lipid phosphatase PTEN and PI3-kinase that increase PIP3 levels increase AKT signaling in a large proportion of human cancers. AKT and other AGC kinases possess a regulatory mechanism that relies on a conserved hydrophobic motif (HM) C-terminal to the catalytic core. In AKT, the HM is contiguous to the serine 473 and two other newly discovered (serine 477 and tyrosine 479) regulatory phosphorylation sites. In AKT genes, this regulatory HM region is encoded in the final exon. We identified a splice variant of AKT2 (AKT2-13a), which contains an alternative final exon and lacks the HM regulatory site. We validated the presence of mRNA for this AKT2-13a splice variant in different tissues, and the presence of AKT2-13a protein in extracts from HEK293 cells. When overexpressed in HEK293 cells, AKT2-13a is phosphorylated at the activation loop and at the zipper/turn motif phosphorylation sites but has reduced specific activity. Analysis of the human transcriptome corresponding to other AGC kinases revealed that all three AKT isoforms express alternative transcripts lacking the HM regulatory motif, which was not the case for SGK1-3, S6K1-2, and classical, novel and atypical PKC isoforms. The transcripts of splice variants of Akt1-3 excluding the HM regulatory region could lead to expression of deregulated forms of AKT.


PLoS Genetics ◽  
2020 ◽  
Vol 16 (11) ◽  
pp. e1009196
Author(s):  
Emese Pataki ◽  
Luba Simhaev ◽  
Hamutal Engel ◽  
Adiel Cohen ◽  
Martin Kupiec ◽  
...  

The Target of rapamycin (TOR) protein kinase forms part of TOR complex 1 (TORC1) and TOR complex 2 (TORC2), two multi-subunit protein complexes that regulate growth, proliferation, survival and developmental processes by phosphorylation and activation of AGC-family kinases. In the fission yeast, Schizosaccharomyces pombe, TORC2 and its target, the AGC kinase Gad8 (an orthologue of human AKT or SGK1) are required for viability under stress conditions and for developmental processes in response to starvation cues. In this study, we describe the isolation of gad8 mutant alleles that bypass the requirement for TORC2 and reveal a separation of function of TORC2 and Gad8 under stress conditions. In particular, osmotic and nutritional stress responses appear to form a separate branch from genotoxic stress responses downstream of TORC2-Gad8. Interestingly, TORC2-independent mutations map into the regulatory PIF pocket of Gad8, a highly conserved motif in AGC kinases that regulates substrate binding in PDK1 (phosphoinositide dependent kinase-1) and kinase activity in several AGC kinases. Gad8 activation is thought to require a two-step mechanism, in which phosphorylation by TORC2 allows further phosphorylation and activation by Ksg1 (an orthologue of PDK1). We focus on the Gad8-K263C mutation and demonstrate that it renders the Gad8 kinase activity independent of TORC2 in vitro and independent of the phosphorylation sites of TORC2 in vivo. Molecular dynamics simulations of Gad8-K263C revealed abnormal high flexibility at T387, the phosphorylation site for Ksg1, suggesting a mechanism for the TORC2-independent Gad8 activity. Significantly, the K263 residue is highly conserved in the family of AGC-kinases, which may suggest a general way of keeping their activity in check when acting downstream of TOR complexes.


Sign in / Sign up

Export Citation Format

Share Document