fusarium tricinctum
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 23)

H-INDEX

19
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Imane Laraba ◽  
Mark Busman ◽  
David M. Geiser ◽  
Kerry O'Donnell

Recent studies on multiple continents indicate members of the Fusarium tricinctum species complex (FTSC) are emerging as prevalent pathogens of small-grain cereals, pulses, and other economically important crops. These understudied fusaria produce structurally diverse mycotoxins, among which enniatins (ENNs) and moniliformin (MON) are the most frequent and of greatest concern to food and feed safety. Herein a large survey of fusaria in the Fusarium Research Center and Agricultural Research Service culture collections was undertaken to assess species diversity and mycotoxin potential within the FTSC. A 151-strain collection originating from diverse hosts and substrates from different agroclimatic regions throughout the world was selected from 460 FTSC strains to represent the breadth of FTSC phylogenetic diversity. Evolutionary relationships inferred from a 5-locus dataset, using maximum likelihood and parsimony, resolved the 151 strains as 24 phylogenetically distinct species, including nine that are new to science. Of the five genes analyzed, nearly full-length phosphate permease sequences contained the most phylogenetically informative characters, establishing its suitability for species-level phylogenetics within the FTSC. Fifteen of the species produced ENNs, MON, the sphingosine analog 2-amino-14,16- dimethyloctadecan-3-ol (AOD), and the toxic pigment aurofusarin (AUR) on a cracked corn kernel substrate. Interestingly, the five earliest diverging species in the FTSC phylogeny (i.e., F. iranicum, F. flocciferum, F. torulosum, Fusarium spp. FTSC 8 and 24) failed to produce AOD and MON, but synthesized ENNs and/or AUR. Moreover, our reassessment of nine published phylogenetic studies on the FTSC identified 11 additional novel taxa, suggesting this complex comprises at least 36 species.


2021 ◽  
Vol 12 ◽  
Author(s):  
Silvia Turco ◽  
Alessandro Grottoli ◽  
Mounira Inas Drais ◽  
Carlo De Spirito ◽  
Luigi Faino ◽  
...  

In summer 2019, during a survey on the health status of a hazelnut orchard located in the Tuscia area (the province of Viterbo, Latium, Italy), nuts showing symptoms, such as brown-grayish spots at the bottom of the nuts progressing upward to the apex, and necrotic patches on the bracts and, sometimes, on the petioles, were found and collected for further studies. This syndrome is associated with the nut gray necrosis (NGN), whose main causal agent is Fusarium lateritium. Aiming to increase knowledge about this fungal pathogen, the whole-genome sequencing of a strain isolated from symptomatic hazelnut was performed using long Nanopore reads technology in combination with the higher precision of the Illumina reads, generating a high-quality genome assembly. The following phylogenetic and comparative genomics analysis suggested that this isolate is caused by the F. tricinctum species complex rather than F. lateritium one, as initially hypothesized. Thus, this study demonstrates that different Fusarium species can infect Corylus avellana producing the same symptomatology. In addition, it sheds light onto the genetic features of the pathogen in subject, clarifying facets about its biology, epidemiology, infection mechanisms, and host spectrum, with the future objective to develop specific and efficient control strategies.


Plant Disease ◽  
2021 ◽  
Author(s):  
Shuwu Zhang ◽  
Jinhuan Chen ◽  
Lijun Ma ◽  
Enchen Li ◽  
Baoli Ji ◽  
...  

Wilting of branches and leaves was observed on 4-5 year old apple trees of the varieties Delicious and Fuji in orchards located in Wushan, Gansu Province, China in April 2018. Subsequently, the stem vascular tissue and woody xylem became discolored and necrotic. The stem dieback expanded rapidly to the entire vasculature of the branches. Finally, the epidermis of the stem bases split and was covered with light pink mold. For the pathogen isolation, 25 symptomatic stems were collected from 25 symptomatic trees in 3 individual orchards. Fragments (approximately 0.5 cm in length × 0.5 cm in width) of symptomatic stems were surface sterilized and individually transferred to Petri dishes containing potato dextrose agar (PDA), and incubated for 4 days at 25°C. Five types of isolates with distinct morphological characteristics (PJ1 to PJ5) were obtained from the 25 symptomatic stems after the single spore inoculation and sub-culture. The isolation frequency of PJ1, PJ2, PJ3, PJ4 and PJ5 types was 11%, 8%, 100%, 4% and 13%, respectively, in the 25 symptomatic stems. A spore suspension of PJ1, PJ2, PJ3, PJ4 and PJ5 types was prepared by adding 5 ml of sterile distilled water in the 14-day old culture colonies and filtered through 0.22 mm Millipore membranes, and the final concentration was adjusted to 108 per ml for inoculation. Detached healthy apple stems (15 cm in length) were surface-disinfested and used to evaluate the pathogenicity of PJ1 (7 isolates), PJ2 (5 isolates), PJ3 (32 isolates), PJ4 (2 isolates) and PJ5 (9 isolates) by dipping the stems into sterilised tubs containing the spore suspension (108 per ml) of each isolate. Apple stems dipped in sterile distilled water served as the control. Each control and treatment were repeated 3 times. At day 15 and 35, the stems infected with the spore suspension of PJ3 isolates developed symptoms that were similar to those observed in the apple orchards. However, the other four types (PJ1, PJ2, PJ4 and PJ5) exhibited either no symptoms or different symptoms from those observed in the apple orchards. There were no symptoms on the control stems. After the colony of the pathogen (PJ3 type) was re-isolated from the infected stem bases 35 days inoculation. The PJ3 type isolates with same morphological characteristics as the original PJ3 type isolates were used for further examination and identification. After 4 days of incubation on PDA, the colonies of PJ3 type isolates developed velvety aerial mycelia with white or light pink color when they were viewed from the front/top side of the PDA and orange-red color when they were viewed from the reverse/bottom side. After 14 days of incubation, the color in the centre of the colonies changed to yellow green in the front view and carmine red in the reverse view of the plates. Three types of spores (microconidia, macroconidia and chlamydospores) were observed after incubation of PJ3 type isolates for 14 days. The size (width and length) of 30 conidia in each of PJ3 type isolates was measured and averaged. The microconidia were abundant on aerial mycelia and limoniform, oval or pyriform with 0-1 septa. Their size ranged from 1.94 μm to 8.05 μm in length and 1.48 μm to 3.62 μm in width. The macroconidia were falciform and curved in shape, mostly with 3-5 septa and a size ranging from 13.52 μm to 22.43 μm in length and 2.31 μm to 3.87 μm in width. The chlamydospores were spherical, intercalary and formed in chains on PDA plates. These morphological characteristics indicate that the PJ3 type isolates could be Fusarium tricinctum (Chen et al. 2019; Aktaruzzaman et al. 2018). To confirm the morphological identification, the sequences of internal transcribed spacer (ITS), transcriptional enhancer factor-1 (TEF-lα) and ribosomal RNA large subunit gene (LSU) of the representative isolate PJ3-3 selected from the PJ3 type isolates with same morphological characteristics were sequenced and used for molecular identification (Laurence et al. 2011; Abd-Elsalam et al. 2003; Miller et al. 1996). The sequences of ITS, TEF-lα and LSU of the PJ3-3 isolate were deposited in NCBI database with the accession numbers of MZ799356, MZ820045 and MZ820044, respectively. In BLAST analyses, the obtained sequences of the PJ3-3 isolate showed 99.47%, 100% and 99.01% identity to the corresponding region of F. tricinctum ITS (JX179207.1: 3-566 Fusarium tricinctum isolate Fyx 1), TEF-lα (MK032320.1 F. tricinctum isolate ZD3) and LSU (KC311496.1 Fusarium tricinctum isolate L12), respectively. The phylogenetic analysis clustered the PJ3-3 isolate sequences within the same clade with ITS, TEF-lα and LSU sequences of F. tricinctum isolates. Thus, the PJ3-3 isolate was identified as F. tricinctum based on the pathogenicity tests, morphological characteristics and molecular analyses. Previously, the symptoms of xylem browning and dieback were observed in the twigs of wild apple trees that were collected from wild apple forests, and the species F. avenaceum, F. solani, F. tricinctum, F. proliferatum, and F. sporotrichioides were isolated from diseased wild apple trees (Chen et al. 2019). Only F. avenaceum, F. solani, F. proliferatum, and F. sporotrichioides were reported as the pathogens causing the disease symptoms of xylem browning and dieback in wild apple trees in Xinjiang, China (Chen et al. 2019). In our present study, we found that F. tricinctum can cause stem vascular and woody xylem browning, wilting, and dieback in the apple tree varieties Delicious and Fuji. These are new symptoms discovered in our present research and different from the previous paper (Chen et al. 2019). Therefore, to our knowledge, this study is the first report of F. tricinctum causing a new disease on apple trees in China following Koch’s postulates. Our findings are important for the management of apple disease and protect apple trees in the future.


Author(s):  
Angelo Garibaldi ◽  
Giulia Tabone ◽  
Vladimiro Guarnaccia ◽  
Incoronata Luongo ◽  
Maria Lodovica Gullino

2021 ◽  
Author(s):  
Bing Li ◽  
Yanyan Zheng ◽  
Yanan Cai ◽  
Jinxin Liu ◽  
Ruiting Wang ◽  
...  

Alfalfa root rot caused by Fusarium tricinctum is one of the most important soil-borne diseases resulting in significant losses to alfalfa agriculture worldwide. Fungicides used in management of disease affect the environment and human health. In this study, a strain of Ochrobactrum intermedium (I-5), isolated from alfalfa rhizosphere soil, exhibited strong antifungal activity against a number of causative pathogens of alfalfa root rot, and showed the strongest antagonistic activity against F. tricinctum (the longest radius/shortest radius ratio of 3.09). When applied at 10%, a filtrate of I-5 liquid culture significantly reduced the spore production and germination and mycelial growth of F. tricinctum, and the inhibition rate was 76.67%, 78.93% and 55.77%, respectively. Furthermore, a filtrate and suspension of the strain, when applied at 10%, reduced alfalfa root rot by more than 73%. The strain clearly promoted the activities of invertase, urease, cellulose, and neutral phosphatase in alfalfa rhizosphere soil and significantly reduced the damage to rhizosphere soil quality attributable to alfalfa root rot. Moreover, the strain clearly promoted the growth of alfalfa, without causing any evident damage to plants. The active substance produced by the strain was relatively insensitive to heat and ultraviolet irradiation and displayed optimal efficacy at pH 8. To the best of our knowledge, this is the first study describing the use of O. intermedium for the biological control of alfalfa root rot. O. intermedium (I-5) has considerable potential for application in the control of alfalfa root rot and improvement of the quality of cultivated alfalfa.


2021 ◽  
Author(s):  
A. Shchukovskaya

AbstractBy results of laboratory researches from plant samples of grain crops species Fusarium avenaceum, Fusarium tricinctum and Fusarium acuminatum related to Fusarium tricinctum species complex were isolated and identified, based on cultural and morphological characteristics, molecular-genetic analysis of 3 DNA fragments was performed: internal transcribed spacer (ITS) site, beta-tubulin gene site (TUB), elongation factor gene site (EF1) showed insignificant intraspecific and interspecific variability at ITS and EF1 sites, which may negatively affect the reliability of target species identification, TUB site was more effective for distinguishing and identifying the studied species, due to significant intraspecific and interspecific variability


Sign in / Sign up

Export Citation Format

Share Document