structural steel
Recently Published Documents


TOTAL DOCUMENTS

2577
(FIVE YEARS 415)

H-INDEX

44
(FIVE YEARS 9)

2022 ◽  
Vol 254 ◽  
pp. 113835
Author(s):  
Redhwan M. Algobahi ◽  
Mohamed Abdel-Basset Abdo ◽  
Mohamed F.M. Fahmy

2022 ◽  
Vol 189 ◽  
pp. 107082
Author(s):  
David A. Padilla-Llano ◽  
Benjamin W. Schafer ◽  
Jerome F. Hajjar

2022 ◽  
Vol 189 ◽  
pp. 107101
Author(s):  
Ming-Ming Ran ◽  
Ya-Chao Zhong ◽  
Yuan-Zuo Wang ◽  
Guo-Qiang Li ◽  
Feng Xiong ◽  
...  

2022 ◽  
Vol 8 ◽  
Author(s):  
Yong Wang ◽  
Gang-feng Yang ◽  
Cheng-liang Ma ◽  
Quan-li Jia ◽  
Qin-guo Jin

Wear resistance is one of the most important performance indicators of filling pipelines, but there are few studies on its quantitative test and life prediction. In this paper, an experimental device and its application method for testing the wear resistance of the pipeline are proposed, and the device is used to test the wear resistance of the self-developed lining composite pipeline, the traditional 16 Mn steel pipeline and the ordinary carbon structural steel pipeline. The results show that the wear resistance of the composite lining material is 12.35 times of that of 16 Mn steel and 7.32 times of that of ordinary carbon structural steel. The wear resistance mechanism is analyzed from the perspective of the material composition of the composite liner, mainly because the composite liner material uses fused alumina grain sand, silicon carbide and other extremely wear-resistant materials with high hardness as aggregate, and the aggregates are spherical or nearly spherical particles, with smooth surface and small friction resistance. Finally, through a comparison engineering application of a certain iron ore concentrate transportation. Compared with the traditional 16 Mn steel pipeline, the composite lined pipeline has been used for more than 5 years without any problems, while the traditional 16 Mn steel pipeline is worn through within 1 year. Engineering application shows that the composite lined pipeline has good wear resistance, and it also confirms the reliability of the detection method proposed in this paper.


2022 ◽  
Vol 2153 (1) ◽  
pp. 012004
Author(s):  
J F Márquez-Peñaranda ◽  
J R Pineda-Rodríguez ◽  
J P Rojas-Suárez

Abstract Bridges represent an important application of physics capable of solving real transportation problems. Knowledge of convenience of different mechanical solutions when analyzing and designing bridge is needed. For these reasons, this work is focused on the study of convenience of using two types of bridges. Simply supported short-medium span bridges (30 m to 45 m) are usually excessively long when choosing reinforced concrete solutions and usually short for other types of structures such as cable-stayed or cantilever bridges. The suitability of simply supported bridges leads to the need of studying their cost benefit ratios. This work studies the cost benefit ratio for post-tensioned concrete beams and structural steel girders in simply supported straight bridges. Eight models built of type I sections were used in both cases to analyze the bridges using a software based on the stiffness method. Span of each bridge was set to 30 m, 35 m, 40 m, and 45 m. The convenience of each type of bridge was done comparing the total and the cost per linear meter of each solution (post-tensioned and structural steel). Comparison was done using material consumption, labor, and construction processes costs only. Also, allowable vertical displacement given by current bridge design standards was verified.


Measurement ◽  
2022 ◽  
pp. 110310
Author(s):  
Yingzhu Wang ◽  
Nanxi Liu ◽  
Yunxuan Gong ◽  
Xupeng Zhu ◽  
Zuohua Li ◽  
...  

Author(s):  
Abhyuday Parihar

Abstract: Conventional leaf spring made up of conventional materials like plain carbon steel are heavy and add weight to vehicle which reduces mileage. This necessitates new material which is light in weight and could provide adequate strength to leaf spring along with higher strain energy absorption to absorb shocks. The current research is intended to study the structural and vibrational characteristics of leaf spring made of P100/6061 Al, P100/AZ 91C Mg and structural steel materials. The investigation is carried out using ANSYS FEA software. The FEA results have shown that P100/AZ/ 91C generated lower stresses as compared to P100/6061 Al and structural steel material. The modal analysis of leaf spring aided to determine mass participation factor and mode shapes corresponding to each frequency. Keywords: Leaf Spring, Energy Absorption, Structural Steel Materials, ANSYS FEA, Frequency.


Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 56
Author(s):  
Qiuyang Yu ◽  
Xiaogang Yang ◽  
Chaobin Lai ◽  
Zhifang Tong

Precipitation of MnS inclusions in steel affects the mechanical properties of the material significantly. The evolution of MnS inclusions along the continuous casting slab thickness and its influencing factors has not been clearly established and comprehensively studied. In this paper, solidification macrostructure, sulfur segregation and MnS inclusions in the continuous casting slab of medium carbon structural steel 45# were studied by various methods, including the metallographic observations, elemental analysis, scanning electron microscope (SEM) with Energy Dispersive Spectrometer (EDS) observation, automatic particle analysis, and thermodynamic calculations. The 2D/3D morphologies of MnS inclusions suggest that the sulfides turn from globular to rodlike, and further to dendritic shape along the slab thickness progressively. Furthermore, it was found that MnS inclusions are remarkably aggregated in the columnar crystals and the equiaxed crystals mixed zone, where the sulfides have the largest average diameter of 6.35 μm and the second maximum area fraction of 0.025% along the slab thickness. In order to reveal the mechanism of this phenomenon, the precipitation temperature of MnS inclusion in the 45# steel was clarified by thermodynamic calculation and experimental observation, and the quantitative relationships among the distribution of sulfur content, secondary dendrite arm spacing (SDAS), and precipitation area fraction of MnS inclusions were discussed. Moreover, the inclusion size was numerically predicted to compare with the measured value. The results indicate that the large SDAS, high sulfur content and low cooling rate accounting for the large-size aggregated MnS inclusions in the mixed zone. Unfortunately, the dendritic MnS inclusions, even if the average diameter exceeds 52 μm, can act as the nucleation sites for ferrites, and the distribution of the sulfides promotes uneven microstructure in the steel.


Sign in / Sign up

Export Citation Format

Share Document