global search
Recently Published Documents


TOTAL DOCUMENTS

557
(FIVE YEARS 130)

H-INDEX

36
(FIVE YEARS 5)

Algorithms ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 23
Author(s):  
Yang Zhang ◽  
Jiacheng Li ◽  
Lei Li

To overcome the shortcomings of the harmony search algorithm, such as its slow convergence rate and poor global search ability, a reward population-based differential genetic harmony search algorithm is proposed. In this algorithm, a population is divided into four ordinary sub-populations and one reward sub-population, for each of which the evolution strategy of the differential genetic harmony search is used. After the evolution, the population with the optimal average fitness is combined with the reward population to produce a new reward population. During an experiment, tests were conducted first on determining the value of the harmony memory size (HMS) and the harmony memory consideration rate (HMCR), followed by an analysis of the effect of their values on the performance of the proposed algorithm. Then, six benchmark functions were selected for the experiment, and a comparison was made on the calculation results of the standard harmony memory search algorithm, reward population harmony search algorithm, differential genetic harmony algorithm, and reward population-based differential genetic harmony search algorithm. The result suggests that the reward population-based differential genetic harmony search algorithm has the merits of a strong global search ability, high solving accuracy, and satisfactory stability.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 212
Author(s):  
Qibing Jin ◽  
Bin Wang ◽  
Zeyu Wang

In this paper, adaptive immune algorithm based on a global search strategy (AIAGS) and auxiliary model recursive least square method (AMRLS) are used to identify the multiple-input multiple-output fractional-order Hammerstein model. The model’s nonlinear parameters, linear parameters, and fractional order are unknown. The identification step is to use AIAGS to find the initial values of model coefficients and order at first, then bring the initial values into AMRLS to identify the coefficients and order of the model in turn. The expression of the linear block is the transfer function of the differential equation. By changing the stimulation function of the original algorithm, adopting the global search strategy before the local search strategy in the mutation operation, and adopting the parallel mechanism, AIAGS further strengthens the original algorithm’s optimization ability. The experimental results show that the proposed method is effective.


2022 ◽  
pp. 1-14
Author(s):  
Hui Yu ◽  
Jun-qing Li ◽  
Xiao-Long Chen ◽  
Wei-meng Zhang

 During recent years, the outpatient scheduling problem has attracted much attention from both academic and medical fields. This paper considers the outpatient scheduling problem as an extension of the flexible job shop scheduling problem (FJSP), where each patient is considered as one job. Two realistic constraints, i.e., switching and preparation times of patients are considered simultaneously. To solve the outpatient scheduling problem, a hybrid imperialist competitive algorithm (HICA) is proposed. In the proposed algorithm, first, the mutation strategy with different mutation probabilities is utilized to generate feasible and efficient solutions. Then, the diversified assimilation strategy is developed. The enhanced global search heuristic, which includes the simulated annealing (SA) algorithm and estimation of distribution algorithm (EDA), is adopted in the assimilation strategy to improve the global search ability of the algorithm.?Moreover, four kinds of neighborhood search strategies are introduced to?generate new?promising?solutions.?Finally, the empires invasion strategy?is?proposed to?increase the diversity of the population. To verify the performance of the proposed HICA, four efficient algorithms, including imperialist competitive algorithm, improved genetic algorithm, EDA, and modified artificial immune algorithm, are selected for detailed comparisons. The simulation results confirm that the proposed algorithm can solve the outpatient scheduling problem with high efficiency.


2021 ◽  
Author(s):  
H. Tran-Ngoc ◽  
S Khatir ◽  
T. Le-Xuan ◽  
H. Tran - Viet ◽  
G. De Roeck ◽  
...  

Abstract Artificial neural network (ANN) is the study of computer algorithms that can learn from experience to improve performance. ANN employs backpropagation (BP) algorithms using gradient descent (GD)-based learning methods to reduce the discrepancies between predicted and real targets. Even though these differences are considerably decreased after each iteration, the network may still face major risks of being entrapped in local minima if complex error surfaces contain too numerous the best local solutions. To overcome those drawbacks of ANN, numerous researchers have come up with solutions to local minimum prevention by choosing a beneficial starting position that relies on the global search capability of other algorithms. This strategy possibly assists the network in avoiding the first local minima. However, a network often has many local bests widely distributed. Hence, the solution of choosing good starting points may no further be beneficial because the particles are probably entrapped in other local optimal solutions throughout the process of looking for the global best. Therefore, in this work, a novel ANN working parallel with the stochastic search capacity of evolutionary algorithms, is proposed. Additionally, to increase the efficiency of the global search capacity, a hybrid of particle swarm optimization and genetic algorithm (PSOGA) is applied during the process of seeking the best solution, which effectively guarantees to assist the network of ANN in escaping from local minima. This strategy gains both benefits of GD techniques as well as the global search capacity of PSOGA that possibly solves the local minima issues thoroughly. The effectiveness of ANNPSOGA is assessed using both numerical models consisting of various damage cases (single and multiple damages) and a free-free steel beam with different damage levels calibrated in the laboratory. The results demonstrate that ANNPSOGA provides higher accuracy than traditional ANN, PSO, and other hybrid ANNs (even a higher level of noise is employed) and also considerably decreases calculational cost compared with PSO.


2021 ◽  
Author(s):  
Abdurrezagh Awid ◽  
Chengjun Guo ◽  
Sebastian Geiger

Abstract Inflow Control Device (ICD) completions can improve well performance by adjusting the inflow profile along the well and reducing the influx of unwanted fluids. The ultimate aim of using ICD completions is to provide maximum oil recovery and/or Net Present Value (NPV) over the life of the field. Proactive ICD optimisation studies use complex reservoir models and high-dimensional nonlinear objective functions to find the optimum ICD configurations over the life of the field. These complex models are generated from fine scale detailed geological models to accurately capture fluid flow behaviour in the reservoir. Although these high-resolution geological models can provide better performance predictions, their simulation runtimes can be computationally expensive and time consuming for performing proactive ICD optimisation studies that often require thousands of simulation runs. We propose a new workflow where we use upscaled and locally refined models coupled with parallelised global search optimisation techniques to improve the simulation efficiency when performing ICD optimisation and decision-making studies. Our approach preserves the flow behaviour in the reservoir and maintains the interaction between the reservoir and the well in the near wellbore region. Moreover, when coupled with parallel optimisation techniques, the simulation time is significantly reduced. We present an in-house code that couples global search optimisation algorithms (Genetic Algorithm and Surrogate Algorithm) with a commercial reservoir simulator to drive the ICD configurations. We evaluate the NPV as the objective function to determine the optimum ICD configurations. We apply and benchmark our approach to two different reservoir models to compare and analyse its efficiency and the optimisation results. Our analysis shows that our proposed approach reduces the run time by more than 80% when using the upscaled models and the parallel optimisation techniques. These results were based on a standard dual-core parallel desktop configuration. Additional results also showed further reduction in run time is possible when employing more processors. Additionally, when testing different ICD completion strategies (ICDs in producers only, ICDs in injectors only, and ICDs in both producers and injectors), the NPV can be increased by 9.6% for the optimised ICD completions. The novelty of our work is rooted in the much-improved simulation efficiency and better performance predictions that supports ICD optimisation and decision-making studies during field development planning to maximize profit and minimize risk over the life of the field.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna Pietrenko-Dabrowska ◽  
Slawomir Koziel

AbstractSimulation-based optimization of geometry parameters is an inherent and important stage of microwave design process. To ensure reliability, the optimization process is normally carried out using full-wave electromagnetic (EM) simulation tools, which entails significant computational overhead. This becomes a serious bottleneck especially if global search is required (e.g., design of miniaturized structures, dimension scaling over broad ranges of operating frequencies, multi-modal problems, etc.). In pursuit of mitigating the high-cost issue, this paper proposes a novel algorithmic approach to rapid EM-driven global optimization of microwave components. Our methodology incorporates a response feature technology and inverse regression metamodels to enable fast identification of the promising parameter space regions, as well as to yield a good quality initial design, which only needs to be tuned using local routines. The presented technique is illustrated using three microstrip circuits optimized under challenging scenarios, and demonstrated to exhibit global search capability while maintaining low computational cost of the optimization process of only about one hundred of EM simulations of the structure at hand on the average. The performance is shown to be superior in terms of efficacy over both local algorithms and nature-inspired global methods.


2021 ◽  
Vol 922 (1) ◽  
pp. 8
Author(s):  
Qing-Zeng Yan ◽  
Ji Yang ◽  
Yang Su ◽  
Yan Sun ◽  
Ye Xu ◽  
...  

Abstract The principle of the background-eliminated extinction-parallax (BEEP) method is examining the extinction difference between on- and off-cloud regions to reveal the extinction jump caused by molecular clouds, thereby revealing the distance in complex dust environments. The BEEP method requires high-quality images of molecular clouds and high-precision stellar parallaxes and extinction data, which can be provided by the Milky Way Imaging Scroll Painting (MWISP) CO survey and the Gaia DR2 catalog, as well as supplementary A V extinction data. In this work, the BEEP method is further improved (BEEP-II) to measure molecular cloud distances in a global search manner. Applying the BEEP-II method to three regions mapped by the MWISP CO survey, we collectively measured 238 distances for 234 molecular clouds. Compared with previous BEEP results, the BEEP-II method measures distances efficiently, particularly for those molecular clouds with large angular size or in complicated environments, making it suitable for distance measurements of molecular clouds in large samples.


Sign in / Sign up

Export Citation Format

Share Document