familial als
Recently Published Documents


TOTAL DOCUMENTS

202
(FIVE YEARS 31)

H-INDEX

44
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Kyrah M Thumbadoo ◽  
Birger V Dieriks ◽  
Helen C Murray ◽  
Molly EV Swanson ◽  
Ji Hun Yoo ◽  
...  

Mutations in the UBQLN2 gene cause X-linked dominant amyotrophic lateral sclerosis (ALS) and/or frontotemporal dementia (FTD) characterised by ubiquilin 2 aggregates in neurons of the motor cortex, hippocampus, cerebellum, and spinal cord. However, ubiquilin 2 neuropathology is also seen in sporadic and familial ALS or FTD cases not caused by UBQLN2 mutations, particularly C9ORF72-linked cases. This makes the mechanistic role of ubiquilin 2 mutations and the value of ubiquilin 2 pathology for predicting genotype unclear. Here we examine a cohort of 31 genotypically diverse ALS cases with or without FTD, including four cases with UBQLN2 mutations (resulting in p.P497H, p.P506S, and two cases with p.T487I). Using double-, triple-, and six-label fluorescent immunohistochemistry, we mapped the co-localisation of ubiquilin 2 with phosphorylated TDP-43 (pTDP-43), dipeptide repeat aggregates, and p62, in the hippocampus of controls (n=5), or ALS with or without FTD in sporadic (n=19), unknown familial (n=3), SOD1-linked (n=1), C9ORF72-linked (n=4), and UBQLN2-linked (n=4) cases. We differentiate between i) ubiquilin 2 aggregation together with, or driven by, pTDP-43 or dipeptide repeat proteins, and ii) ubiquilin 2 self-aggregation driven by UBQLN2 gene mutations. Together we describe a hippocampal protein aggregation signature that fully distinguishes mutant from wildtype ubiquilin 2 in ALS with or without FTD, whereby mutant ubiquilin 2 is more prone than wildtype to aggregate independently of driving factors. This neuropathological signature can be used to assess the pathogenicity of UBQLN2 gene mutations and to understand the mechanisms of UBQLN2-linked disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xinmei Wen ◽  
Wenjia Zhu ◽  
Nan L. Xia ◽  
Qianwen Li ◽  
Li Di ◽  
...  

Amyotrophic lateral sclerosis (ALS) is the most common form of motor neuron disease, characterized by a great variety of both clinical presentations and genetic causes. Previous studies had identified two different missense mutations in SOD1 (p.R116C and p.R116G) causing familial ALS. In this study, we report a novel heterozygous missense mutation in the SOD1 gene (p.R116S) in a family with inherited ALS manifested as fast-deteriorating pure lower motor neuron symptoms. The patient displayed similar clinical picture and prognostic value to previous reported cases with different R116 substitution mutations. Modeling of all R116 substitutions in the resolved SOD1 protein structure revealed a shared mechanism with destroyed hydrogen bonds between R116 and other two residues, which might lead to protein unfolding and oligomer formation, ultimately conferring neurotoxicity.


2021 ◽  
Vol 36 (6) ◽  
pp. 1205-1205
Author(s):  
Etiane Navarro ◽  
Charles J Golden

Abstract Objective Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disease caused by degeneration of the upper and lower motor neurons. This literature review examines the recurring etiology of cognitive impairments in ALS through empirical literature. The current study explores ALS across different subtypes and potential cognitive impairments. Two classifications are primarily examined ALS, and ALS with frontotemporal dementia (ALS-FTD). Involving three categories: familial inheritance pattern, genetic mutation, or sporadic. Neuropsychological studies affirm cognitive impairments in individuals diagnosed with ALS and ALS-FTD. Data Selection Data was culled from the American Psychological Association (PsycInfo), PubMed, Google Scholar. Terms used in this literature review include cognitive impairment in ALS and ALS-FTD, executive function deficiencies in ALS, neuropsychology in ALS, neuropsychological deficits in ALS, neuropsychological assessments for ALS, cognitive impairments in familial ALS, genetic ALS, and sporadic ALS, familial ALS, sporadic ALS, genetic mutations involved in ALS. Search dates December 20–23 of 2020 and March 3–4 of 2021. A total of 40 studies were examined. Data Synthesis ALS-patients demonstrate a significant cognitive impairment. However, influencing comorbidities accompanying the disease may be contributing to these impairments. Researchers employed neuroimaging and neuropsychological batteries to further understand influencing factors involved in ALS and cognition. Conclusions Researchers now understand ALS as a multi-symptomatic disorder and acknowledge the presence of cognitive impairments at various encased levels. There are limitations in neuropsychological batteries that accommodate for executive dysfunctions observed in ALS patients. Future studies should explore neuropsychological assessments that accommodate for motor deficits and dysarthria when assessing cognitive impairment in ALS patients.


2021 ◽  
Author(s):  
Sean-Patrick Riechers ◽  
Jelena Mojsilovic-Petrovic ◽  
Mehraveh Garjani ◽  
Valentina Medvedeva ◽  
Casey Dalton ◽  
...  

SummaryNormal cellular function requires a rate of ATP production sufficient to meet demand. In most neurodegenerative diseases (including Amyotrophic Lateral Sclerosis, ALS), mitochondrial dysfunction is postulated raising the possibility of impaired ATP production and a need for compensatory maneuvers to sustain the ATP production/demand balance. We find in our rodent models of familial ALS (fALS), impairment in neuronal glycolytic flux with maintained or enhanced activity of the citric acid cycle. This rewiring of metabolism is associated with normal ATP levels and redox status, supporting the notion that mitochondrial function is not compromised in neurons expressing fALS genes. Genetic loss-of-function manipulation of individual steps in the glycolysis and the pentose phosphate pathway blunt the negative phenotypes seen in various fALS models. We propose that neurons adjust fuel utilization in the setting of neurodegenerative disease-associated mitochondrial dysfunction in a baleful manner and targeting this process can be healthful.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
João D. Pereira ◽  
Daniel M. DuBreuil ◽  
Anna-Claire Devlin ◽  
Aaron Held ◽  
Yechiam Sapir ◽  
...  

AbstractHuman induced pluripotent stem cells (iPSC) hold promise for modeling diseases in individual human genetic backgrounds and thus for developing precision medicine. Here, we generate sensorimotor organoids containing physiologically functional neuromuscular junctions (NMJs) and apply the model to different subgroups of amyotrophic lateral sclerosis (ALS). Using a range of molecular, genomic, and physiological techniques, we identify and characterize motor neurons and skeletal muscle, along with sensory neurons, astrocytes, microglia, and vasculature. Organoid cultures derived from multiple human iPSC lines generated from individuals with ALS and isogenic lines edited to harbor familial ALS mutations show impairment at the level of the NMJ, as detected by both contraction and immunocytochemical measurements. The physiological resolution of the human NMJ synapse, combined with the generation of major cellular cohorts exerting autonomous and non-cell autonomous effects in motor and sensory diseases, may prove valuable to understand the pathophysiological mechanisms of ALS.


Author(s):  
Jannigje Rachel Kok ◽  
Nelma M. Palminha ◽  
Cleide Dos Santos Souza ◽  
Sherif F. El-Khamisy ◽  
Laura Ferraiuolo

AbstractIncreasing evidence supports the involvement of DNA damage in several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Elevated levels of DNA damage are consistently observed in both sporadic and familial forms of ALS and may also play a role in Western Pacific ALS, which is thought to have an environmental cause. The cause of DNA damage in ALS remains unclear but likely differs between genetic subgroups. Repeat expansion in the C9ORF72 gene is the most common genetic cause of familial ALS and responsible for about 10% of sporadic cases. These genetic mutations are known to cause R-loops, thus increasing genomic instability and DNA damage, and generate dipeptide repeat proteins, which have been shown to lead to DNA damage and impairment of the DNA damage response. Similarly, several genes associated with ALS including TARDBP, FUS, NEK1, SQSTM1 and SETX are known to play a role in DNA repair and the DNA damage response, and thus may contribute to neuronal death via these pathways. Another consistent feature present in both sporadic and familial ALS is the ability of astrocytes to induce motor neuron death, although the factors causing this toxicity remain largely unknown. In this review, we summarise the evidence for DNA damage playing a causative or secondary role in the pathogenesis of ALS as well as discuss the possible mechanisms involved in different genetic subtypes with particular focus on the role of astrocytes initiating or perpetuating DNA damage in neurons.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Ashley Crook ◽  
Chris Jacobs ◽  
Toby Newton-John ◽  
Ebony Richardson ◽  
Alison McEwen

Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 827
Author(s):  
Matan Soll ◽  
Hagit Goldshtein ◽  
Ron Rotkopf ◽  
Niva Russek-Blum ◽  
Zeev Gross

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting motor neurons. To date, the etiology of the disease is still unclear, with evidence of reactive oxygen species, mitochondrial dysfunction, iron homeostasis perturbation, protein misfolding and protein aggregation as key players in the pathology of the disease. Twenty percent of familial ALS and two percent of sporadic ALS instances are due to a mutation in Cu/Zn superoxide dismutase (SOD1). Sporadic and familial ALS affects the same neurons with similar pathology; therefore, the underlying hypothesis is that therapies effective in mutant SOD1 models could be translated to sporadic ALS. Corrole metal complexes have lately been identified as strong and potent catalytic antioxidants with beneficial effects in oxidative stress-related diseases such as Parkinson’s disease, Alzheimer’s disease, atherosclerosis, diabetes and its complications. One of the most promising candidates is the iron complex of an amphiphilic corrole, 1-Fe. In this study we used the SOD1 G93R mutant zebrafish ALS model to assess whether 1-Fe, as a potent catalytic antioxidant, displays any therapeutic merits in vivo. Our results show that 1-Fe caused a substantial increase in mutant zebrafish locomotor activity (up to 30%), bringing the locomotive abilities of the mutant treated group close to that of the wild type untreated group (50% more than the mutated untreated group). Furthermore, 1-Fe did not affect WT larvae locomotor activity, suggesting that 1-Fe enhances locomotor ability by targeting mechanisms underlying SOD1 ALS specifically. These results may pave the way for future development of 1-Fe as a viable treatment for ALS.


Author(s):  
Antonio Canosa ◽  
Annarosa Lomartire ◽  
Giovanni De Marco ◽  
Maurizio Grassano ◽  
Maura Brunetti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document