polar stratospheric cloud
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 8)

H-INDEX

34
(FIVE YEARS 1)

2022 ◽  
Vol 22 (1) ◽  
pp. 245-272
Author(s):  
Jānis Puķīte ◽  
Christian Borger ◽  
Steffen Dörner ◽  
Myojeong Gu ◽  
Thomas Wagner

Abstract. Chlorine dioxide (OClO) is a by-product of the ozone-depleting halogen chemistry in the stratosphere. Although it is rapidly photolysed at low solar zenith angles (SZAs), it plays an important role as an indicator of the chlorine activation in polar regions during polar winter and spring at twilight conditions because of the nearly linear dependence of its formation on chlorine oxide (ClO). Here, we compare slant column densities (SCDs) of chlorine dioxide (OClO) retrieved by means of differential optical absorption spectroscopy (DOAS) from spectra measured by the TROPOspheric Monitoring Instrument (TROPOMI) with meteorological data for both Antarctic and Arctic regions for the first three winters in each of the hemispheres (November 2017–October 2020). TROPOMI, a UV–Vis–NIR–SWIR instrument on board of the Sentinel-5P satellite, monitors the Earth's atmosphere in a near-polar orbit at an unprecedented spatial resolution and signal-to-noise ratio and provides daily global coverage at the Equator and thus even more frequent observations at polar regions. The observed OClO SCDs are generally well correlated with the meteorological conditions in the polar winter stratosphere; for example, the chlorine activation signal appears as a sharp gradient in the time series of the OClO SCDs once the temperature drops to values well below the nitric acid trihydrate (NAT) existence temperature (TNAT). Also a relation of enhanced OClO values at lee sides of mountains can be observed at the beginning of the winters, indicating a possible effect of lee waves on chlorine activation. The dataset is also compared with CALIPSO Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) polar stratospheric cloud (PSC) observations. In general, OClO SCDs coincide well with CALIOP measurements for which PSCs are detected. Very high OClO levels are observed for the northern hemispheric winter 2019/20, with an extraordinarily long period with a stable polar vortex being even close to the values found for southern hemispheric winters. An extraordinary winter in the Southern Hemisphere was also observed in 2019, with a minor sudden stratospheric warming at the beginning of September. In this winter, similar OClO values were measured in comparison to the previous (usual) winter till that event but with a OClO deactivation that was 1–2 weeks earlier.


2021 ◽  
Author(s):  
Marcel Snels ◽  
Francesco Colao ◽  
Francesco Cairo ◽  
Ilir Shuli ◽  
Andrea Scoccione ◽  
...  

<p>Polar stratospheric clouds have been observed at Dome C by a ground-based lidar from 2014 up to the present, possibly in coincidence with nearby overpasses of the CALIPSO satellite, with the CALIOP lidar on board.</p><p>A thorough study has been made in terms of detection efficiency and composition classification of near coincident lidar observations, with the goal to identify the main biases between the two lidars.</p><p>When comparing ground-based lidar observations with nearby CALIOP overpasses, several biases might occur, due to the distance between ground-based lidar and nearest overpass, observation geometry and integration times and different algorithms used for data analysis.</p><p>The bias resulting from different data analysis has been reduced by applying an algorithm for PSC detection and composition classification to the ground-based data which is very similar to the V2 algorithm used for CALIOP.</p><p>By comparing 5 years of PSC observations at Dome C, considering both detection efficiency and composition of the observed PSCs, the impact of all biases will be discussed and possibly quantified. </p>


2021 ◽  
Vol 21 (1) ◽  
pp. 505-516 ◽  
Author(s):  
Matthias Tesche ◽  
Peggy Achtert ◽  
Michael C. Pitts

Abstract. Spaceborne observations of polar stratospheric clouds (PSCs) with the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite provide a comprehensive picture of the occurrence of Arctic and Antarctic PSCs as well as their microphysical properties. However, advances in understanding PSC microphysics also require measurements with ground-based instruments, which are often superior to CALIOP in terms of, for example, time resolution, measured parameters, and signal-to-noise ratio. This advantage is balanced by the location of ground-based PSC observations and their dependence on tropospheric cloudiness. CALIPSO observations during the boreal winters from December 2006 to February 2018 and the austral winters 2012 and 2015 are used to assess the effect of tropospheric cloudiness and other measurement-inhibiting factors on the representativeness of ground-based PSC observations with lidar in the Arctic and Antarctic, respectively. Information on tropospheric and stratospheric clouds from the CALIPSO Cloud Profile product (05kmCPro version 4.10) and the CALIPSO polar stratospheric cloud mask version 2, respectively, is combined on a profile-by-profile basis to identify conditions under which a ground-based lidar is likely to perform useful measurements for the analysis of PSC occurrence. It is found that the location of a ground-based measurement together with the related tropospheric cloudiness can have a profound impact on the derived PSC statistics and that these findings are rarely in agreement with polewide results from CALIOP observations. Considering the current polar research infrastructure, it is concluded that the most suitable sites for the expansion of capabilities for ground-based lidar observations of PSCs are Summit and Villum in the Arctic and Mawson, Troll, and Vostok in the Antarctic.


2021 ◽  
Author(s):  
Catherine Wilka ◽  
Susan Solomon ◽  
Doug Kinnison ◽  
David Tarasick

Abstract. Without the Montreal Protocol the already extreme Arctic ozone losses in boreal spring of 2020 would be expected to have produced an Antarctic-like ozone hole, with an area of total ozone below 220 DU of about 20 million km2. Record observed local lows of 0.1 ppmv at some altitudes in the lower stratosphere would have reached 0.01, again similar to the Antarctic. This provides an opportunity to test parameterizations of polar stratospheric cloud impacts on denitrification, and thereby to improve stratospheric models. Spring ozone depletion would have begun earlier and lasted longer without the Montreal Protocol, and by 2020 the year-round ozone depletion would have begun to dramatically diverge from the observed case. This study reinforces that the historically extreme 2020 Arctic ozone depletion is not cause for concern over the Montreal Protocol's effectiveness, but rather demonstrates that the Montreal Protocol indeed merits celebration for avoiding an Arctic ozone hole.


2020 ◽  
Author(s):  
Matthias Tesche ◽  
Peggy Achtert ◽  
Michael C. Pitts

Abstract. Spaceborne observations of Polar Stratospheric Clouds (PSCs) with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite provide a comprehensive picture of the occurrence of Arctic and Antarctic PSCs as well as their microphysical properties. However, advances in understanding PSC microphysics also require measurements with ground-based instruments, which are often superior to CALIOP in terms of, e.g. time resolution, measured parameters, and signal-to-noise ratio. This advantage is balanced by the location of ground-based PSC observations and their dependence on tropospheric cloudiness. CALIPSO observations during the boreal winters from December 2006 to February 2018 and the austral winters 2012 and 2015 are used to assess the representativeness of ground-based PSC observations with lidar in the Arctic and Antarctic, respectively. Information on tropospheric and stratospheric clouds from the CALIPSO Cloud Profile product (05kmCPro version 4.10) and the Polar Stratospheric Cloud (PSC) mask version 2, respectively, is combined on a profile-by-profile basis to identify conditions under which a ground-based lidar is likely to perform useful measurements for the analysis of PSC occurrence. It is found that the location of a ground-based measurement together with the related tropospheric cloudiness can have a profound impact on the derived PSC statistics and that these findings are rarely in agreement with polar-wide results from CALIOP observations. Considering the current polar research infrastructure, it is concluded that the most suitable sites for the expansion of capabilities for ground-based lidar observations of PSCs are Summit and Villum in the Arctic and Concordia, Troll, and Vostok in the Antarctic.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Daniel J. Cziczo ◽  
Martin J. Wolf ◽  
Blaž Gasparini ◽  
Steffen Münch ◽  
Ulrike Lohmann

AbstractThe Earth has now warmed ~1.0 °C since the period 1850–1900, due in large part to the anthropogenic addition of greenhouse gases to the atmosphere. Most strategies to address this warming have called for a reduction of emissions and, often, accompanying removal of greenhouse gases. Other proposals suggest masking the increased radiative forcing by an increase in particles and/or clouds to increase scattering of incoming solar radiation. Two related recent proposals have suggested addition of calcite particles to the stratosphere, which one model suggests may enhance ozone. Here we show that the interaction of calcite with acidic materials in the stratosphere results in a more complex aerosol than has been previously considered, including aqueous and hydrate phases that can lead to ozone loss. Our study suggests particle addition to the stratosphere could also perturb global radiative balance by affecting high altitude cloud formation and properties. Experimental and modeling results suggest particles will act as the nucleation sites for polar stratospheric cloud ice and, after sedimentation into the troposphere, impact cirrus clouds in the absence of other efficient ice nucleating particles. These results show that an overly simplistic set of assumptions regarding intentional particle emissions to the atmosphere can lead to incorrect estimates of the radiative effect and fail to identify unintended consequences.


2019 ◽  
Vol 19 (2) ◽  
pp. 955-972 ◽  
Author(s):  
Marcel Snels ◽  
Andrea Scoccione ◽  
Luca Di Liberto ◽  
Francesco Colao ◽  
Michael Pitts ◽  
...  

Abstract. A comparison of polar stratospheric cloud (PSC) occurrence from 2006 to 2010 is presented, as observed from the ground-based lidar station at McMurdo (Antarctica) and by the satellite-borne CALIOP lidar (Cloud-Aerosol Lidar with Orthogonal Polarization) measuring over McMurdo. McMurdo (Antarctica) is one of the primary lidar stations for aerosol measurements of the NDACC (Network for Detection of Atmospheric Climate Change). The ground-based observations have been classified with an algorithm derived from the recent v2 detection and classification scheme, used to classify PSCs observed by CALIOP. A statistical approach has been used to compare ground-based and satellite-based observations, since point-to-point comparison is often troublesome due to the intrinsic differences in the observation geometries and the imperfect overlap of the observed areas. A comparison of space-borne lidar observations and a selection of simulations obtained from chemistry–climate models (CCMs) has been made by using a series of quantitative diagnostics based on the statistical occurrence of different PSC types. The distribution of PSCs over Antarctica, calculated by several CCMVal-2 and CCMI chemistry–climate models has been compared with the PSC coverage observed by the satellite-borne CALIOP lidar. The use of several diagnostic tools, including the temperature dependence of the PSC occurrences, evidences the merits and flaws of the different models. The diagnostic methods have been defined to overcome (at least partially) the possible differences due to the resolution of the models and to identify differences due to microphysics (e.g., the dependence of PSC occurrence on T−TNAT). A significant temperature bias of most models has been observed, as well as a limited ability to reproduce the longitudinal variations in PSC occurrences observed by CALIOP. In particular, a strong temperature bias has been observed in CCMVal-2 models with a strong impact on PSC formation. The WACCM-CCMI (Whole Atmosphere Community Climate Model – Chemistry-Climate Model Initiative) model compares rather well with the CALIOP observations, although a temperature bias is still present.


2018 ◽  
Vol 11 (10) ◽  
pp. 5901-5923
Author(s):  
Michael Höpfner ◽  
Terry Deshler ◽  
Michael Pitts ◽  
Lamont Poole ◽  
Reinhold Spang ◽  
...  

Abstract. A global data set of vertical profiles of polar stratospheric cloud (PSC) volume density has been derived from Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) space-borne infrared limb measurements between 2002 and 2012. To develop a well characterized and efficient retrieval scheme, systematic tests based on limb-radiance simulations for PSCs from in situ balloon observations have been performed. The finally selected wavenumber range was 831–832.5 cm−1. Optical constants of nitric acid trihydrate (NAT) have been used to derive maximum and minimum profiles of volume density which are compatible with MIPAS observations under the assumption of small, non-scattering and larger, scattering PSC particles. These max/min profiles deviate from their mean value at each altitude by about 40 %–45 %, which is attributed as the maximum systematic error of the retrieval. Further, the retrieved volume density profiles are characterized by a random error due to instrumental noise of 0.02–0.05 µm3 cm−3, a detection limit of about 0.1–0.2 µm3 cm−3 and a vertical resolution of around 3 km. Comparisons with coincident observations by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite showed good agreement regarding the vertical profile shape. Quantitatively, in the case of supercooled ternary solution (STS) PSCs, the CALIOP dataset fits to the MIPAS retrievals obtained under the assumptions of small particles. Unlike for STS and NAT, in the case of ice PSCs the MIPAS retrievals are limited by the clouds becoming optically thick in the limb-direction. In these cases, the MIPAS volume densities represent lower limits. Among other interesting features, this climatology helps to study quantitatively the on-set of PSC formation very near to the South Pole and the large variability of the PSC volume densities between different Arctic stratospheric winters.


Sign in / Sign up

Export Citation Format

Share Document