sensing model
Recently Published Documents


TOTAL DOCUMENTS

318
(FIVE YEARS 91)

H-INDEX

20
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Wim Deferme ◽  
Manoj Jose ◽  
Annelies Bronckaers ◽  
Rachith S N ◽  
Dieter Reenaers ◽  
...  

Abstract Temperature and strain are two vital parameters that play a significant role in wound diagnosis and healing. As periodic temperature measurements with a custom thermometer or strain measurements with conventional metallic gauges became less feasible for the modern competent health monitoring, individual temperature and strain measurement modalities incorporated into wearables and patches were developed. The proposed research in the article shows the development of a single sensor solution which can simultaneously measure both the above mentioned parameters. This work integrates a thermoelectric principle based temperature measurement approach into wearables, ensuring flexibility and bendability properties without affecting its thermo-generated voltage. The modified thermoelectric material helped to achieve stretchability of the sensor, thanks to its superior mechano-transduction properties. Moreover, the stretch-induced resistance changes become an additional marker for strain measurements so that both the parameters can be measured with the same sensor. Due to the independent measurement parameters (open circuit voltage and sensor resistance ), the sensing model is greatly attractive for measurements without cross-sensitivity. The highly resilient temperature and strain sensor show excellent linearity, repeatability and good sensitivity. Besides, due to the compatibility of the fabrication scheme to low temperature processing of the flexible materials and to mass volume production, printed fabrication methodologies were adopted to realize the sensor. This promises low cost production and a disposable nature (single use) of the sensor patch. The temperature-strain dual parameter semi-transparent sensor has been further tested on mice wounds in vivo. The preliminary experiments on mice wounds offer prospects for developing smart, i.e. sensorized, wound dressings for clinical applications.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Chong Mu

This paper provides an in-depth study and analysis of the optimization of sports event management systems using wireless sensor networks. Aiming at the monitoring task of a directed wireless sensor network in a three-dimensional environment, the directed sensing nodes scattered inside the designated monitoring area in a random deployment manner usually have uneven distribution and other problems; we analyze the characteristics of the directed sensor nodes, probabilistic sensing model, and the cooperative sensing model of multiple sensor nodes for monitoring target points and propose a sensing optimization strategy in polar coordinates to guide the three-dimensional plane directed orientation adjustment and sensing optimization of sensor nodes, thus enhancing the sensing capability of network nodes. The experimental results confirm that the algorithm can improve the coverage of the area to be monitored and the quality of sensing service, and it reduces the overall energy consumption of the network by using the distributed node synchronization scheduling mechanism to extend the life cycle of the network to maintain good monitoring capability under the premise of the limited total usage of the directed nodes in wireless sensor networks. The application of wireless sensor network technology in sports competition management mainly includes the application of smart wearable devices in sports competition training, the application of goal-line technology in sports competition, and the application of eagle eye technology in sports events, all three technologies have certain advantages in the application of sports competition, and all of their help to promote the improvement of sports event management and the development of sports industry; the second aspect is wireless sensor. The second aspect is the application of wireless sensor network technology in sports event information management, which is mainly used to collect information related to sports events and fully utilize it to make sports event management more informative and digital, which is helpful to improve the level of sports event management; the third aspect is the application of wireless sensor network technology in sports event stadium management, which is mainly based on intelligent stadiums to create a more spectator-friendly and good experience for the audience, a more ornamental and good experience viewing place, to promote the development and growth of sports industry.


2022 ◽  
pp. 104126
Author(s):  
Han Chen ◽  
Jinhui Jeanne Huang ◽  
Sonam Sandeep Dash ◽  
Zhiqing Lan ◽  
Junjie Gao ◽  
...  

Author(s):  
Xiaoye Qian ◽  
Chao Zhang ◽  
Jaswanth Yella ◽  
Yu Huang ◽  
Ming-Chun Huang ◽  
...  

Actuators ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 322
Author(s):  
Shuzhong Zhang ◽  
Tianyi Chen ◽  
Tatiana Minav ◽  
Xuepeng Cao ◽  
Angeng Wu ◽  
...  

Automated operations are widely used in harsh environments, in which position information is essential. Although sensors can be equipped to obtain high-accuracy position information, they are quite expensive and unsuitable for harsh environment applications. Therefore, a position soft-sensing model based on a back propagation (BP) neural network is proposed for direct-driven hydraulics (DDH) to protect against harsh environmental conditions. The proposed model obtains a position by integrating velocity computed from the BP neural network, which trains the nonlinear relationship between multi-input (speed of the electric motor and pressures in two chambers of the cylinder) and single-output (the cylinder’s velocity). First, the model of a standalone crane with DDH was established and verified by experiment. Second, the data from batch simulation with the verified model was used for training and testing the BP neural network in the soft-sensing model. Finally, position estimation with a typical cycle was performed using the created position soft-sensing model. Compared with the experimental data, the maximum soft-sensing position error was about 7 mm, and the error rate was within ±2.5%. Furthermore, position estimations were carried out with the proposed soft-sensing model under differing working conditions and the errors were within 4 mm, but the periodically cumulative error was observed. Hence, a reference point is proposed to minimize the accumulative error, for example, a point at the middle of the cylinder. Therefore, the work can be applied to acquire position information to facilitate automated operation of machines equipped with DDH.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1565
Author(s):  
Rajendra Khanal ◽  
Sulochan Dhungel ◽  
Simon C. Brewer ◽  
Michael E. Barber

Estimation of satellite-based remotely sensed evapotranspiration (ET) as consumptive use has been an integral part of agricultural water management. However, less attention has been given to future predictions of ET at watershed-scales especially since with a changing climate, there are additional challenges to planning and management of water resources. In this paper, we used nine years of total seasonal ET derived using a satellite-based remote sensing model, Mapping Evapotranspiration at Internalized Calibration (METRIC), to develop a Random Forest machine learning model to predict watershed-scale ET into the future. This statistical model used topographic and climate variables in agricultural areas of Lower Yakima, Washington and had a prediction accuracy of 88% for the region. This model was then used to predict ET into the future with changed climatic conditions under RCP4.5 and RCP8.5 emission scenarios expected by 2050s. The model result shows increases in seasonal ET across some areas of the watershed while decreases in other areas. On average, growing seasonal ET across the watershed was estimated to increase by +5.69% under the low emission scenario (RCP4.5) and +6.95% under the high emission scenario (RCP8.5).


Author(s):  
Onny Setyawati ◽  
A. Shidqy Aziz ◽  
Rodiyati Azrianingsih ◽  
Rahmadwati ◽  
M. Fauzan Edy Purnomo ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 6977
Author(s):  
Merkebu Girmay ◽  
Vasilis Maglogiannis ◽  
Dries Naudts ◽  
Adnan Shahid ◽  
Ingrid Moerman

Nowadays, broadband applications that use the licensed spectrum of the cellular network are growing fast. For this reason, Long-Term Evolution-Unlicensed (LTE-U) technology is expected to offload its traffic to the unlicensed spectrum. However, LTE-U transmissions have to coexist with the existing WiFi networks. Most existing coexistence schemes consider coordinated LTE-U and WiFi networks where there is a central coordinator that communicates traffic demand of the co-located networks. However, such a method of WiFi traffic estimation raises the complexity, traffic overhead, and reaction time of the coexistence schemes. In this article, we propose Experience Replay (ER) and Reward selective Experience Replay (RER) based Q-learning techniques as a solution for the coexistence of uncoordinated LTE-U and WiFi networks. In the proposed schemes, the LTE-U deploys a WiFi saturation sensing model to estimate the traffic demand of co-located WiFi networks. We also made a performance comparison between the proposed schemes and other rule-based and Q-learning based coexistence schemes implemented in non-coordinated LTE-U and WiFi networks. The simulation results show that the RER Q-learning scheme converges faster than the ER Q-learning scheme. The RER Q-learning scheme also gives 19.1% and 5.2% enhancement in aggregated throughput and 16.4% and 10.9% enhancement in fairness performance as compared to the rule-based and Q-learning coexistence schemes, respectively.


2021 ◽  
Vol 13 (20) ◽  
pp. 11262
Author(s):  
Mohamed A. M. Abd Elbasit ◽  
Jasper Knight ◽  
Gang Liu ◽  
Majed M. Abu-Zreig ◽  
Rashid Hasaan

Although changes in ecosystems in response to climate and land-use change are known to have implications for the provision of different environmental and ecosystem services, quantifying the economic value of some of these services can be problematic and has not been widely attempted. Here, we used a simplified raster remote sensing model based on MODIS data across South Africa for five different time slices for the period 2001–2019. The aims of the study were to quantify the economic changes in ecosystem services due to land degradation and land-cover changes based on areal values (in USD ha−1 yr−1) for ecosystem services reported in the literature. Results show progressive and systematic changes in land-cover classes across different regions of South Africa for the time period of analysis, which are attributed to climate change. Total ecosystem service values for South Africa change somewhat over time as a result of land-use change, but for 2019 this calculated value is USD 437 billion, which is ~125% of GDP. This is the first estimation of ecosystem service value made for South Africa at the national scale. In detail, changes in land cover over time within each of the nine constituent provinces in South Africa mean that ecosystem service values also change regionally. There is a clear disparity between the provinces with the greatest ecosystem service values when compared to their populations and contribution to GDP. This highlights the potential for untapped ecosystem services to be exploited as a tool for regional sustainable development.


Sign in / Sign up

Export Citation Format

Share Document