surrogate models
Recently Published Documents


TOTAL DOCUMENTS

1023
(FIVE YEARS 400)

H-INDEX

41
(FIVE YEARS 9)

2022 ◽  
Vol 166 ◽  
pp. 108407
Author(s):  
Felix Schneider ◽  
Iason Papaioannou ◽  
Daniel Straub ◽  
Christoph Winter ◽  
Gerhard Müller

2022 ◽  
Vol 7 (01) ◽  
pp. 31-51
Author(s):  
Tanya Peart ◽  
Nicolas Aubin ◽  
Stefano Nava ◽  
John Cater ◽  
Stuart Norris

Velocity Prediction Programs (VPPs) are commonly used to help predict and compare the performance of different sail designs. A VPP requires an aerodynamic input force matrix which can be computationally expensive to calculate, limiting its application in industrial sail design projects. The use of multi-fidelity kriging surrogate models has previously been presented by the authors to reduce this cost, with high-fidelity data for a new sail being modelled and the low-fidelity data provided by data from existing, but different, sail designs. The difference in fidelity is not due to the simulation method used to obtain the data, but instead how similar the sail’s geometry is to the new sail design. An important consideration for the construction of these models is the choice of low-fidelity data points, which provide information about the trend of the model curve between the high-fidelity data. A method is required to select the best existing sail design to use for the low-fidelity data when constructing a multi-fidelity model. The suitability of an existing sail design as a low fidelity model could be evaluated based on the similarity of its geometric parameters with the new sail. It is shown here that for upwind jib sails, the similarity of the broadseam between the two sails best indicates the ability of a design to be used as low-fidelity data for a lift coefficient surrogate model. The lift coefficient surrogate model error predicted by the regression is shown to be close to 1% of the lift coefficient surrogate error for most points. Larger discrepancies are observed for a drag coefficient surrogate error regression.


Author(s):  
Mina Rahimian ◽  
Jose Pinto Duarte ◽  
Lisa Domenica Iulo

Abstract This paper discusses the development of an experimental software prototype that uses surrogate models for predicting the monthly energy consumption of urban-scale community design scenarios in real time. The surrogate models were prepared by training artificial neural networks on datasets of urban form and monthly energy consumption values of all zip codes in San Diego county. The surrogate models were then used as the simulation engine of a generative urban design tool, which generates hypothetical communities in San Diego following the county's existing urban typologies and then estimates the monthly energy consumption value of each generated design option. This paper and developed software prototype is part of a larger research project that evaluates the energy performance of community microgrids via their urban spatial configurations. This prototype takes the first step in introducing a new set of tools for architects and urban designers with the goal of engaging them in the development process of community microgrids.


Author(s):  
Changcong Zhou ◽  
Hanlin Zhang ◽  
Qi Chang ◽  
Xiaokang Song ◽  
Chen Li

Sign in / Sign up

Export Citation Format

Share Document