behaviour changes
Recently Published Documents


TOTAL DOCUMENTS

350
(FIVE YEARS 147)

H-INDEX

27
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Jürgen Buder ◽  
Anja Zimmermann ◽  
Brett Buttliere ◽  
Lisa Rabl ◽  
Markus Huff

Online phenomena like echo chambers and belief polarisation are believed to be driven by humans’ penchant to selectively expose themselves to attitudinally congenial content. However, if like-minded content were the only predictor of online behaviour, heated debate and flaming on the Internet would hardly occur. Research has overlooked how online behaviour changes when people are given an opportunity to reply to dissenters, potentially turning a preference for attitudinally congenial information into a preference for uncongenial information. Three main experiments consistently show that in a discussion forum setting where users can respond to earlier posts, larger conflict between user attitude and post attitude predicts higher likelihood to respond. The effect of conflict on response behaviour is shaped by the attitudinal composition of the forum, and it also predicts subsequent polarisation of users’ attitudes. These results suggest that belief polarisation on social media can be driven by conflict rather than congeniality.


Author(s):  
Anna Maria Becker ◽  
Heike Marquart ◽  
Torsten Masson ◽  
Carolin Helbig ◽  
Uwe Schlink

AbstractFeedback on personal exposure to air pollution, noise or extreme temperatures through wearable sensors or sensors installed at home or in the workplace can offer information that might motivate behaviours to mitigate exposure. As personal measurement devices are becoming increasingly accessible, it is important to evaluate the effects of such sensors on human perception and behaviour. We conducted a systematic literature research and identified 33 studies, analysing the effects of personal feedback on air pollution, noise and temperatures. Feedback was given through reports including different forms of visualization, in-person or over the telephone, or directly on the sensor or through a phone app. The exposure feedback led to behaviour changes particularly for noise and temperature feedback while findings on behaviour adaptation to avoid air pollution were mixed. Most studies reported increased awareness and knowledge from receiving exposure feedback. Many participants in studies on air pollution reported low levels of self-efficacy regarding exposure mitigation. For a better understanding of the effects of personal exposure feedback, more studies are required, particularly providing feedback from wearable sensors measuring outdoor air pollution, noise and temperature.


2021 ◽  
Vol 1 (1) ◽  
pp. 25-32

The Malaysian Government implemented stringent containment measures to avoid the spread of COVID-19, including social isolation and the closure of businesses and schools. Although these steps are necessary to prevent the virus from spreading, many voices have raised concerns about their possible effects on the agri-food system. Therefore, this study aims to identify the effect of the Covid-19 pandemic on fresh farm consumption among consumers in Alor Gajah, Melaka. This study was guided by the following research objectives: (i) to investigate the impacts of Covid-19 pandemic on consumer attitudes and behaviours on food consumption at Alor Gajah. (ii) to find out the implications of the closure of Covid-19 on food security in Alor Gajah, Melaka. Besides, this study uses quantitative methods involving (n=154) residents in the district of Alor Gajah, Melaka. The research data were analyzed using the Statistical Package for the Social Sciences (SPSS) version 20. Descriptive analysis was used, and the result shows that the food consumption behaviour changes during the Covid-19 pandemic especially on the fresh farm produce. The findings may provide information for the local government to develop a framework that will help to address the shortage of fresh agriculture products that were affected by the pandemic at Alor Gajah, Melaka. It will also help to prepare for an unexpected future crisis by building on existing emergency plans as well as long-term food-related strategies.


2021 ◽  
Author(s):  
◽  
Konrad Cedd Weaver

<p>Earthquakes redistribute fluids and change associated flow paths in the subsurface. Earthquake hydrology is an evolving discipline that studies such phenomena, providing novel information on crustal processes, natural hazards and water resources. This thesis uses the internationally significant New Zealand "hydroseismicity" dataset, in a regional-scale multi-site multi-earthquake study which includes the occurrence and the absence of responses, spanning a decade. Earthquake-induced groundwater level and tidal behaviour changes were examined in a range of aquifers, rock types and hydrogeological settings. Monitoring wells were within one (near-field) to several (intermediate- field) ruptured fault lengths of a variety of earthquakes that had a range of shaking intensities. This thesis presents three studies on the seismic and hydrogeological controls on earthquake-induced groundwater level changes.  Water level changes were recorded New Zealand-wide within compositionally diverse, young shallow aquifers, in 433 monitoring wells at distances between 4 and 850 km from the 2016 Mw 7.8 Kaikoura earthquake epicentre. Water level changes are inconsistent with static stress changes, but do correlate with peak ground acceleration (PGA). At PGAs exceeding ~2 m/s2, water level changes predominantly increased persistently, which may have resulted from shear-induced consolidation. At lower PGAs there were approximately equal numbers of persistent water level increases and decreases, which are thought to have resulted from permeability enhancement. Water level changes also occurred more frequently north of the epicentre, due to the northward directivity of the Kaikoura earthquake rupture. Local hydrogeological conditions also contributed to the observed responses, with larger water level changes occurring in deeper wells and in well-consolidated rocks at equivalent PGA levels.  Earthquakes have previously been inferred to induce hydrological changes in aquifers on the basis of changes to well tidal behaviour and water level, but the relationship between these changes have been unclear. Earthquake-induced changes to tidal behaviour and groundwater levels were quantified in 161 monitoring wells screened in gravel aquifers in Canterbury, New Zealand. In the near-field of the Canterbury earthquake sequence of 2010 and 2011, permeability reduction detected by tidal behaviour changes and increased water levels supports the hypothesis of shear-induced consolidation. Water level changes that occurred with no change in tidal behaviour re-equilibrated at a new post-seismic level within ~50 minutes possibly due to high permeability, good well-aquifer coupling, and/or small permeability changes in the local aquifer. Water level changes that occurred with tidal behaviour changes took from ~240 minutes to ~10 days to re-equilibrate, thought to represent permeability changes on a larger scale. Recent studies commonly utilise a general metric for earthquake-induced hydrological responses based on epicentral distance, earthquake magnitude and seismic energy density. A logistic regression model with random effects was applied to a dataset of binary responses of 495 monitoring well water levels to 11 Mw 5.4 or larger earthquakes. Within the model, earthquake shaking (represented by peak ground velocity), degree of confinement (depth) and rock strength (site average shear wave velocity in the shallow subsurface) were incorporated. For practical applications, the probabilistic framework was converted into the Modified Mercalli (MM) intensity scale. The model shows that water level changes are unlikely below MM intensity VI. At an MM intensity VII, water level changes are about as likely as not to very likely. At MM intensity VIII, the likelihood rises to very likely to virtually certain. This study was the first attempt we are aware of worldwide at incorporating both seismic and hydrogeological factors into a probabilistic framework for earthquake-induced groundwater level changes. The framework is a novel and more universal approach in quantifying responses than previous metrics using epicentral distance, magnitude and seismic energy density. It has potential to enable better comparison of international studies and inform practitioners making decisions around investment to mitigate risk to, and to increase the resilience of, water supply infrastructure.</p>


2021 ◽  
Author(s):  
◽  
Konrad Cedd Weaver

<p>Earthquakes redistribute fluids and change associated flow paths in the subsurface. Earthquake hydrology is an evolving discipline that studies such phenomena, providing novel information on crustal processes, natural hazards and water resources. This thesis uses the internationally significant New Zealand "hydroseismicity" dataset, in a regional-scale multi-site multi-earthquake study which includes the occurrence and the absence of responses, spanning a decade. Earthquake-induced groundwater level and tidal behaviour changes were examined in a range of aquifers, rock types and hydrogeological settings. Monitoring wells were within one (near-field) to several (intermediate- field) ruptured fault lengths of a variety of earthquakes that had a range of shaking intensities. This thesis presents three studies on the seismic and hydrogeological controls on earthquake-induced groundwater level changes.  Water level changes were recorded New Zealand-wide within compositionally diverse, young shallow aquifers, in 433 monitoring wells at distances between 4 and 850 km from the 2016 Mw 7.8 Kaikoura earthquake epicentre. Water level changes are inconsistent with static stress changes, but do correlate with peak ground acceleration (PGA). At PGAs exceeding ~2 m/s2, water level changes predominantly increased persistently, which may have resulted from shear-induced consolidation. At lower PGAs there were approximately equal numbers of persistent water level increases and decreases, which are thought to have resulted from permeability enhancement. Water level changes also occurred more frequently north of the epicentre, due to the northward directivity of the Kaikoura earthquake rupture. Local hydrogeological conditions also contributed to the observed responses, with larger water level changes occurring in deeper wells and in well-consolidated rocks at equivalent PGA levels.  Earthquakes have previously been inferred to induce hydrological changes in aquifers on the basis of changes to well tidal behaviour and water level, but the relationship between these changes have been unclear. Earthquake-induced changes to tidal behaviour and groundwater levels were quantified in 161 monitoring wells screened in gravel aquifers in Canterbury, New Zealand. In the near-field of the Canterbury earthquake sequence of 2010 and 2011, permeability reduction detected by tidal behaviour changes and increased water levels supports the hypothesis of shear-induced consolidation. Water level changes that occurred with no change in tidal behaviour re-equilibrated at a new post-seismic level within ~50 minutes possibly due to high permeability, good well-aquifer coupling, and/or small permeability changes in the local aquifer. Water level changes that occurred with tidal behaviour changes took from ~240 minutes to ~10 days to re-equilibrate, thought to represent permeability changes on a larger scale. Recent studies commonly utilise a general metric for earthquake-induced hydrological responses based on epicentral distance, earthquake magnitude and seismic energy density. A logistic regression model with random effects was applied to a dataset of binary responses of 495 monitoring well water levels to 11 Mw 5.4 or larger earthquakes. Within the model, earthquake shaking (represented by peak ground velocity), degree of confinement (depth) and rock strength (site average shear wave velocity in the shallow subsurface) were incorporated. For practical applications, the probabilistic framework was converted into the Modified Mercalli (MM) intensity scale. The model shows that water level changes are unlikely below MM intensity VI. At an MM intensity VII, water level changes are about as likely as not to very likely. At MM intensity VIII, the likelihood rises to very likely to virtually certain. This study was the first attempt we are aware of worldwide at incorporating both seismic and hydrogeological factors into a probabilistic framework for earthquake-induced groundwater level changes. The framework is a novel and more universal approach in quantifying responses than previous metrics using epicentral distance, magnitude and seismic energy density. It has potential to enable better comparison of international studies and inform practitioners making decisions around investment to mitigate risk to, and to increase the resilience of, water supply infrastructure.</p>


2021 ◽  
Vol 8 (12) ◽  
Author(s):  
Matthew Egbert

Recent empirical work has characterized motile oil droplets —small, self-propelled oil droplets whose active surface chemistry moves them through their aqueous environment. Previous work has evaluated in detail the fluid dynamics underlying the motility of these droplets. This paper introduces a new computational model that is used to evaluate the behaviour of these droplets as a form of viability-based adaptive self-preservation , whereby (i) the mechanism of motility causes motion towards the conditions beneficial to that mechanism’s persistence; and (ii) the behaviour automatically adapts to compensate when the motility mechanism’s ideal operating conditions change. The model simulates a motile oil droplet as a disc that moves through a two-dimensional spatial environment containing diffusing chemicals. The concentration of reactants on its surface change by way of chemical reactions, diffusion, Marangoni flow (the equilibriation of surface tension) and exchange with the droplet’s local environment. Droplet motility is a by-product of Marangoni flow, similar to the motion-producing mechanism observed in the lab. We use the model to examine how the droplet’s behaviour changes when its ideal operating conditions vary.


2021 ◽  
Vol 8 (12) ◽  
Author(s):  
Mamoru Ishii ◽  
Tomoko Tateya ◽  
Michiyuki Matsuda ◽  
Tsuyoshi Hirashima

The bending of epithelial tubes is a fundamental process in organ morphogenesis, driven by various multicellular behaviours. The cochlea in the mammalian inner ear is a representative example of spiral tissue architecture where the continuous bending of the duct is a fundamental component of its morphogenetic process. Although the cochlear duct morphogenesis has been studied by genetic approaches extensively, it is still unclear how the cochlear duct morphology is physically formed. Here, we report that nuclear behaviour changes are associated with the curvature of the pseudostratified epithelium during murine cochlear development. Two-photon live-cell imaging reveals that the nuclei shuttle between the luminal and basal edges of the cell is in phase with cell-cycle progression, known as interkinetic nuclear migration, in the flat region of the pseudostratified epithelium. However, the nuclei become stationary on the luminal side following mitosis in the curved region. Mathematical modelling together with perturbation experiments shows that this nuclear stalling facilitates luminal-basal differential growth within the epithelium, suggesting that the nuclear stalling would contribute to the bending of the pseudostratified epithelium during the cochlear duct development. The findings suggest a possible scenario of differential growth which sculpts the tissue shape, driven by collective nuclear dynamics.


2021 ◽  
Vol 13 (23) ◽  
pp. 13218
Author(s):  
Janet Music ◽  
Sylvain Charlebois ◽  
Louise Spiteri ◽  
Shannon Farrell ◽  
Alysha Griffin

The era of the COVID-19 pandemic has resulted in a variety of individual lifestyle and behavioural changes, and could, therefore, potentially involve a shift towards more sustainable food systems. This research was conducted through an online survey of cross-sectional design. We surveyed 8272 Canadians in August of 2020. Participants answered questions about socio-demographic food waste amounts in kilograms, and food-waste-management behaviours. In this exploratory study, we assessed the relationships between socio-demographic variables, and self-reported food-waste behaviours through two-tailed significance testing. Results indicated that Canadian households self-reported an insignificant decrease in food waste during the pandemic. Respondents reported allowing food to expire, not utilizing leftovers, and not finishing meals. Understanding food-waste behaviour changes is key to designing effective mitigation strategies to reduce household food waste and to minimize the environmental consequences with which food waste is associated.


2021 ◽  
Author(s):  
Danuta M Jeziorska ◽  
Edward A J Tunnacliffe ◽  
Jill M Brown ◽  
Helena Ayyub ◽  
Jacqueline A Sloane-Stanley ◽  
...  

Determining the mechanisms by which genes are switched on and off during development and differentiation is a key aim of current biomedical research. Gene transcription has been widely observed to occur in a discontinuous fashion, with short bursts of activity interspersed with longer periods of inactivity. It is currently not known if or how this dynamic behaviour changes as mammalian cells differentiate. To investigate this, using a newly developed on-microscope analysis, we monitored mouse α-globin transcription in live cells throughout sequential stages of erythropoiesis. We find that changes in the overall levels of α-globin transcription are most closely associated with changes in the fraction of time a gene spends in the active transcriptional state. We identify differences in the patterns of transcriptional bursting throughout differentiation, with maximal transcriptional activity occurring in the mid-phase of differentiation. Early in differentiation, we observe increased fluctuation in the patterns of transcriptional activity whereas at the peak of gene expression, in early and intermediate erythroblasts, transcription appears to be relatively stable and efficient. Later during differentiation as α-globin expression declines, we again observed more variability in transcription within individual cells. We propose that the observed changes in transcriptional behaviour may reflect changes in the stability of enhancer-promoter interactions and the formation of active transcriptional compartments as gene expression is turned on and subsequently declines at sequential stages of differentiation.


Sign in / Sign up

Export Citation Format

Share Document