atmospheric observations
Recently Published Documents


TOTAL DOCUMENTS

326
(FIVE YEARS 91)

H-INDEX

44
(FIVE YEARS 5)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yugo Kanaya ◽  
Kazuyo Yamaji ◽  
Takuma Miyakawa ◽  
Fumikazu Taketani ◽  
Chunmao Zhu ◽  
...  

AbstractEmissions of black carbon (BC) particles from anthropogenic and natural sources contribute to climate change and human health impacts. Therefore, they need to be accurately quantified to develop an effective mitigation strategy. Although the spread of the emission flux estimates for China have recently narrowed under the constraints of atmospheric observations, consensus has not been reached regarding the dominant emission sector. Here, we quantified the contribution of the residential sector, as 64% (44–82%) in 2019, using the response of the observed atmospheric concentration in the outflowing air during Feb–Mar 2020, with the prevalence of the COVID-19 pandemic and restricted human activities over China. In detail, the BC emission fluxes, estimated after removing effects from meteorological variability, dropped only slightly (− 18%) during Feb–Mar 2020 from the levels in the previous year for selected air masses of Chinese origin, suggesting the contributions from the transport and industry sectors (36%) were smaller than the rest from the residential sector (64%). Carbon monoxide (CO) behaved differently, with larger emission reductions (− 35%) in the period Feb–Mar 2020, suggesting dominance of non-residential (i.e., transport and industry) sectors, which contributed 70% (48–100%) emission during 2019. The estimated BC/CO emission ratio for these sectors will help to further constrain bottom-up emission inventories. We comprehensively provide a clear scientific evidence supporting mitigation policies targeting reduction in residential BC emissions from China by demonstrating the economic feasibility using marginal abatement cost curves.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Minde An ◽  
Luke M. Western ◽  
Daniel Say ◽  
Liqu Chen ◽  
Tom Claxton ◽  
...  

AbstractWith the successful implementation of the Montreal Protocol on Substances that Deplete the Ozone Layer, the atmospheric abundance of ozone-depleting substances continues to decrease slowly and the Antarctic ozone hole is showing signs of recovery. However, growing emissions of unregulated short-lived anthropogenic chlorocarbons are offsetting some of these gains. Here, we report an increase in emissions from China of the industrially produced chlorocarbon, dichloromethane (CH2Cl2). The emissions grew from 231 (213–245) Gg yr−1 in 2011 to 628 (599–658) Gg yr−1 in 2019, with an average annual increase of 13 (12–15) %, primarily from eastern China. The overall increase in CH2Cl2 emissions from China has the same magnitude as the global emission rise of 354 (281−427) Gg yr−1 over the same period. If global CH2Cl2 emissions remain at 2019 levels, they could lead to a delay in Antarctic ozone recovery of around 5 years compared to a scenario with no CH2Cl2 emissions.


2021 ◽  
Vol 922 (2) ◽  
pp. 226
Author(s):  
Llŷr Dafydd Humphries ◽  
Huw Morgan

Abstract Small-scale brightenings in solar atmospheric observations are a manifestation of heating and/or energy transport events. We present statistical characteristics of brightenings from a new detection method applied to 1330, 1400, and 2796 Å IRIS slit-jaw image time series. A total of 2377 events were recorded that coexist in all three channels, giving high confidence that they are real. Of these, ≈1800 were spatially coherent, equating to event densities of ∼9.7 × 10−5 arcsec−2 s−1 within a 90″ × 100″ FOV over 34.5 minutes. Power-law indices estimates are determined for total brightness (2.78 < α < 3.71), maximum brightness (3.84 < α < 4.70), and average area (4.31 < α < 5.70) distributions. Duration and speed distributions do not obey a power law. A correlation is found between the events’ spatial fragmentation, area, and duration, and a weak relationship with total brightness, showing that larger/longer-lasting events are more likely to fragment during their lifetime. Speed distributions show that all events are in motion, with an average speed of ∼7 km s−1. The events’ spatial trajectories suggest that cooler 2796 Å events tend to appear slightly later and occupy a different position/trajectory than the hotter channel results. This suggests that either many of these are impulsive events caused by reconnection, with subsequent rapid cooling, or that the triggering event occurs near the TR, with a subsequent propagating disturbance to cooler atmospheric layers. The spatial distribution of events is not uniform, with broad regions devoid of events. A comparison of spatial distribution with properties of other atmospheric layers shows a tentative connection between high magnetic field strength, the corona’s multi-thermality, and high IRIS brightening activity.


2021 ◽  
Vol 13 (23) ◽  
pp. 4866
Author(s):  
Keita Matsuzawa ◽  
Yohei Kinoshita

Interferometric synthetic aperture radar (InSAR) enables us to obtain precipitable water vapor (PWV) maps with high spatial resolution through the phase difference caused by refraction in the atmosphere. Although previous studies have evaluated the error level of InSARPWV observations, they validated it only with C-band InSARPWV observations. Since ionospheric disturbance seriously contaminates the InSAR phase in the case of the lower-frequency SAR system, it is necessary for a PWV error level evaluation correcting the ionospheric effect appropriately if we use lower-frequency SAR systems, such as the Advanced Land Observing Satellite-2 (ALOS-2). In this paper, we evaluated the error level of the L-band InSARPWV observation obtained from ALOS-2 data covering four areas in Japan. We compared the InSAR observations with global navigation satellite system (GNSS) atmospheric observations and estimated the L-band InSARPWV error value by utilizing the error propagation theory. As a result, the L-band InSARPWV absolute error reached 2.83 mm, which was comparable to traditional PWV observations. Moreover, we investigated the impacts of the seasonality, the interferometric coherence, and the height dependence on the PWV observation accuracy in InSAR.


Author(s):  
Emily A. Gilbert ◽  
Thomas Barclay ◽  
Ethan Kruse ◽  
Elisa V. Quintana ◽  
Lucianne M. Walkowicz

Proxima Centauri is our nearest stellar neighbor and one of the most well-studied stars in the sky. In 2016, a planetary companion was detected through radial velocity measurements. Proxima Centauri b has a minimum mass of 1.3 Earth masses and orbits with a period of 11.2 days at 0.05 AU from its stellar host, and resides within the star’s Habitable Zone. While recent work has shown that Proxima Centauri b likely does not transit, given the value of potential atmospheric observations via transmission spectroscopy of the closest possible Habitable Zone planet, we reevaluate the possibility that Proxima Centauri b is a transiting exoplanet using data from the Transiting Exoplanet Survey Satellite (TESS). We use three sectors (Sectors 11, 12, and 38 at 2-min cadence) of observations from TESS to search for planets. Proxima Centauri is an extremely active M5.5 star, emitting frequent white-light flares; we employ a novel method that includes modeling the stellar activity in our planet search algorithm. We do not detect any planet signals. We injected synthetic transiting planets into the TESS and use this analysis to show that Proxima Centauri b cannot be a transiting exoplanet with a radius larger than 0.4 R⊕. Moreover, we show that it is unlikely that any Habitable Zone planets larger than Mars transit Proxima Centauri.


2021 ◽  
Vol 14 (10) ◽  
pp. 6867-6883
Author(s):  
Ulrich Platt ◽  
Thomas Wagner ◽  
Jonas Kuhn ◽  
Thomas Leisner

Abstract. Spectroscopy of scattered sunlight in the near-UV to near-IR spectral ranges has proven to be an extremely useful tool for the analysis of atmospheric trace gas distributions. A central parameter for the achievable sensitivity and spatial resolution of spectroscopic instruments is the étendue (product of aperture angle and entrance area) of the spectrograph, which is at the heart of the instrument. The étendue of an instrument can be enhanced by (1) upscaling all instrument dimensions or (2) by changing the instrument F number, (3) by increasing the entrance area, or (4) by operating many instruments (of identical design) in parallel. The étendue can be enhanced by (in principle) arbitrary factors by options (1) and (4); the effect of options (2) and (3) is limited. We present some new ideas and considerations of how instruments for the spectroscopic determination of atmospheric gases could be optimized using new possibilities in spectrograph design and manufacturing. Particular emphasis is on arrays of massively parallel instruments for observations using scattered sunlight. Such arrays can reduce size and weight of instruments by orders of magnitude while preserving spectral resolution and light throughput. We also discuss the optimal size of individual spectrographs in a spectrograph array and give examples of spectrograph systems for use on a (low Earth orbit) satellite, including one with sub-kilometre ground pixel size.


2021 ◽  
Author(s):  
Ingeborg Levin ◽  
Ute Karstens ◽  
Samuel Hammer ◽  
Julian DellaColetta ◽  
Fabian Maier ◽  
...  

Abstract. Correlations of night-time atmospheric methane (CH4) and 222Radon (222Rn) observations in Heidelberg, Germany, were evaluated with the Radon Tracer Method (RTM) to estimate the trend of annual CH4 emissions from 1996–2020 in the catchment area of the station. After an initial 30 % decrease of emissions from 1996 to 2004, no further systematic trend but small inter-annual variations were observed thereafter. This is in accordance with the trend of emissions until 2010 reported by the EDGARv6.0 inventory for the surroundings of Heidelberg. We show that the reliability of total CH4 emission estimates with the RTM critically depends on the accuracy and representativeness of the 222Rn exhalation rate from soils in the catchment area of the site. Simply using 222Rn fluxes as estimated by Karstens et al. (2015) could lead to biases in the estimated greenhouse gases (GHG) fluxes as large as a factor of two. RTM-based GHG flux estimates also depend on the parameters chosen for the night-time correlations of CH4 and 222Rn, such as the night-time period for regressions as well as the R2 cut-off value for the goodness of the fit. Quantitative comparison of total RTM-based top-down with bottom-up emission inventories requires representative high-resolution footprint modelling, particularly in polluted areas where CH4 emissions show large heterogeneity. Even then, RTM-based estimates are likely biased low if point sources play a significant role in the station/observation footprint as their emissions are not captured by the RTM method. Long-term representative 222Rn flux observations in the catchment area of a station are indispensable in order to apply the RTM method for reliable quantitative flux estimations of GHG emissions from atmospheric observations.


Icarus ◽  
2021 ◽  
pp. 114688
Author(s):  
Hiroyuki Kurokawa ◽  
Takeshi Kuroda ◽  
Shohei Aoki ◽  
Hiromu Nakagawa

Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1042
Author(s):  
Maria Kezoudi ◽  
Christos Keleshis ◽  
Panayiota Antoniou ◽  
George Biskos ◽  
Murat Bronz ◽  
...  

The Unmanned Systems Research Laboratory (USRL) of the Cyprus Institute is a new mobile exploratory platform of the EU Research Infrastructure Aerosol, Clouds and Trace Gases Research InfraStructure (ACTRIS). USRL offers exclusive Unmanned Aerial Vehicle (UAV)-sensor solutions that can be deployed anywhere in Europe and beyond, e.g., during intensive field campaigns through a transnational access scheme in compliance with the drone regulation set by the European Union Aviation Safety Agency (EASA) for the research, innovation, and training. UAV sensor systems play a growing role in the portfolio of Earth observation systems. They can provide cost-effective, spatial in-situ atmospheric observations which are complementary to stationary observation networks. They also have strong potential for calibrating and validating remote-sensing sensors and retrieval algorithms, mapping close-to-the-ground emission point sources and dispersion plumes, and evaluating the performance of atmospheric models. They can provide unique information relevant to the short- and long-range transport of gas and aerosol pollutants, radiative forcing, cloud properties, emission factors and a variety of atmospheric parameters. Since its establishment in 2015, USRL is participating in major international research projects dedicated to (1) the better understanding of aerosol-cloud interactions, (2) the profiling of aerosol optical properties in different atmospheric environments, (3) the vertical distribution of air pollutants in and above the planetary boundary layer, (4) the validation of Aeolus satellite dust products by utilizing novel UAV-balloon-sensor systems, and (5) the chemical characterization of ship and stack emissions. A comprehensive overview of the new UAV-sensor systems developed by USRL and their field deployments is presented here. This paper aims to illustrate the strong scientific potential of UAV-borne measurements in the atmospheric sciences and the need for their integration in Earth observation networks.


Sign in / Sign up

Export Citation Format

Share Document