compression after impact
Recently Published Documents


TOTAL DOCUMENTS

256
(FIVE YEARS 81)

H-INDEX

34
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Kade E. Jacobs ◽  
Katherine Grigoriou ◽  
Patrick Frezza ◽  
Lachlan J. Webb ◽  
Alex Harman ◽  
...  

2022 ◽  
pp. 002199832110605
Author(s):  
Niels van Hoorn ◽  
Christos Kassapoglou ◽  
Sergio Turteltaub ◽  
Wouter van den Brink

Impact experiments of thick fabric carbon/epoxy laminate specimens, with small thickness ratio, are conducted at distinct energy levels and thicknesses to characterise the damage process. These specimens and loading conditions are representative of a new generation of critical structural components in aviation, such as wing spars, landing gear beams and fittings, that are increasingly being made entirely from composites. The tests address the need to better understand the damage process for specimens with a small thickness ratio since existing experimental impact data for large thickness ratio (thin laminates) may not be directly applicable. Two energy levels, two different fabric layups and two impact methods (drop-weight and gas-cannon) were used. Data from high-speed cameras were processed in a novel way, providing the force during impact. C-scans and micrographs were used to characterise damage. The results show that specimens with a thickness ratio of 5 (20 mm thick) experience more bending compared to specimens with a ratio 2.5 (40 mm thick). For gas-cannon impacts, this results in a higher delaminated area. The drop-weight impacts show almost no differences in damage size for the thickness range analysed. The influence of layup on the global impact response is negligible, but locally it can result in significant variations in dent depth. The dent depth scales linearly with the impact energy and the delaminated area linearly with the impact velocity. There is no clear correlation between the compression-after-impact failure mechanisms and the residual strength. Impact damage, at the current energy levels, showed a minimal reduction of residual strength.


Author(s):  
Balaji Rajendran ◽  
Dinesh Kumar P K

Abstract Under controlled lab settings, two distinct laminates, one containing cenosphere and the other with neat resin, were evaluated for impact using a Fractovis impact machine, compression testing, and compression after impact tests (CAI) with a Tinus Olsen UTM. The GFRP laminates were made by hand lay-up method with 16 layers of glass fiber in 4.7±0.2 mm thickness and combined with epoxy resin reinforced Cenospheres at concentrations of 1, 3 and 5 wt. %, according to ASTM specifications. The dominant failure mode controlling the specimen's compression ultimate load resistance, and other failure modes of impacted specimens such like fiber pull-out and debonding, were found to be the effects of delamination using coupled acoustic emission (AE) monitoring and compression tests. On specimens with a 3 wt. % filler additive, there was a noticeable increase in strength. Both impacted and non-impacted samples exhibited significant compression ultimate load resistances, with the 3 wt. % filler impregnated specimen having the maximum.


2021 ◽  
Vol 5 (11) ◽  
pp. 296
Author(s):  
Raffael Bogenfeld ◽  
Christopher Gorsky

The behavior of impact damaged composite laminates under cyclic load is crucial to achieve a damage tolerant design of composite structures. A sufficient residual strength has to be ensured throughout the entire structural service life. In this study, a set of 27 impacted coupon specimens is subjected to quasi-static and cyclic compression load. After long intervals without detectable damage growth, the specimens fail through the sudden lateral propagation of delamination and fiber kink bands within few load cycles. Ultrasonic inspections were used to reveal the damage size after certain cycle intervals. Through continuous dent depth measurements during the cyclic tests, the evolution of the dent visibility was monitored. These measurements revealed a relaxation of the indentation of up to 90% before ultimate failure occurs. Due to the distinct relaxation and the short growth interval before ultimate failure, this study confirms the no-growth design approach as the preferred method to account for the damage tolerance of stiffened, compression-loaded composite laminates.


Sign in / Sign up

Export Citation Format

Share Document