brassica carinata
Recently Published Documents


TOTAL DOCUMENTS

274
(FIVE YEARS 75)

H-INDEX

32
(FIVE YEARS 3)

2022 ◽  
Vol 196 ◽  
pp. 103344
Author(s):  
Rogério de Souza Nóia Júnior ◽  
Clyde W. Fraisse ◽  
Mahesh Bashyal ◽  
Michael J. Mulvaney ◽  
Ramdeo Seepaul ◽  
...  

2022 ◽  
Author(s):  
Won Cheol Yim ◽  
Mia L. Swain ◽  
Dongna Ma ◽  
Hong An ◽  
Kevin A Bird ◽  
...  

Ethiopian mustard (Brassica carinata) is an ancient crop with significant potential for expanded cultivation as a biodiesel feedstock. The remarkable stress resilience of B. carinata and desirable seed fatty acid profile addresses the ongoing food vs. fuel debate as the crop is productive on marginal lands otherwise not suitable for even closely related species. B. carinata is one of six key Brassica spp. that share three major genomes: three diploid species (AA, BB, CC) that spontaneously hybridized in a pairwise manner, forming three allotetraploid species (AABB, AACC, and BBCC). Each of these genomes has been researched extensively, except for that of B. carinata. In the present study, we report a high-quality, 1.31 Gbp genome with 156.9-fold sequencing coverage for B. carinata var. Gomenzer, completing and confirming the classic Triangle of U, a theory of the evolutionary relationships among these six species that arose almost a century ago. Our assembly provides insights into the genomic features that give rise to B. carinata's superior agronomic traits for developing more climate-resilient Brassica crops with excellent oil production. Notably, we identified an expansion of transcription factor networks and agronomically-important gene families. Completing the Triangle of U comparative genomics platform allowed us to examine the dynamics of polyploid evolution and the role of subgenome dominance in domestication and agronomical improvement.


2021 ◽  
Vol 12 ◽  
Author(s):  
Omkar Maharudra Limbalkar ◽  
Rajendra Singh ◽  
Parvesh Kumar ◽  
Joghee Nanjundan ◽  
Chiter Mal Parihar ◽  
...  

Among Brassica species, Ethiopian mustard (Brassica carinata A. Braun) is known to tolerate most abiotic stresses, including drought. Drought caused by low and erratic rainfall in semi-arid regions consistently challenges rapeseed mustard productivity. Development of B. carinata-derived lines (CDLs) in Brassica juncea (L.) Czern. nuclear background, carrying genomic segments from B. carinata, are expected to tolerate moisture deficit stress conditions. The present study was, thus, aimed to establish the phenomenon “heterosis” for drought tolerance and water use efficiency by evaluating 105 hybrids developed from intermating 15 CDLs in half diallel fashion. Data on 17 seed yield and yield contributing traits were recorded under two different environments, viz., irrigated and rainfed conditions. Traits under study were found to be governed by both additive and non-additive types of gene action. Average degree of dominance was higher (>2) for yield and yield contributing traits, viz., secondary branches/plant, point to first siliqua on main shoot, total siliquae/plant, 1,000-seed weight, seed yield/plant, biological yield, harvest index, and seed yield/hectare under rainfed conditions, clearly indicating that higher productivity under drought conditions can be realised through the development of hybrids. Out of 15, highly significant general combining ability (GCA) effects for seven CDLs were observed under rainfed condition. Furthermore, nine and six hybrids expressed highly significant specific combining ability (SCA) effects and > 50% heterobeltiosis for yield contributing traits under rainfed and irrigated conditions, respectively. Water use efficiency (WUE) of parental CDLs and hybrids varied from 2.05 to 2.57 kg m–3 under rainfed, while 1.10 to 1.28 kg m–3 under irrigated conditions. Hybrids expressed higher WUE than parental lines under both water regimes. Furthermore, selection indices such as drought tolerance index (DTI) and mean relative performance (MRP) were identified to be efficient in the selection of productive CDLs and hybrids under drought conditions. Nine hybrids, identified as highly productive in the present study, can further be exploited for improving the yield of Indian mustard in drought-prone areas. Usefulness of interspecific hybridisation in the development of B. carinata-derived B. juncea lines for improving heterosis and WUE is, thus, well demonstrated through the present study.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zolian Zoong Lwe ◽  
Saroj Sah ◽  
Leelawatti Persaud ◽  
Jiaxu Li ◽  
Wei Gao ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zolian Zoong Lwe ◽  
Saroj Sah ◽  
Leelawatti Persaud ◽  
Jiaxu Li ◽  
Wei Gao ◽  
...  

Abstract Background Brassica carinata (A) Braun has recently gained increased attention across the world as a sustainable biofuel crop. B. carinata is grown as a summer crop in many regions where high temperature is a significant stress during the growing season. However, little research has been conducted to understand the mechanisms through which this crop responds to high temperatures. Understanding traits that improve the high-temperature adaption of this crop is essential for developing heat-tolerant varieties. This study investigated lipid remodeling in B. carinata in response to high-temperature stress. A commercial cultivar, Avanza 641, was grown under sunlit-controlled environmental conditions in Soil-Plant-Atmosphere-Research (SPAR) chambers under optimal temperature (OT; 23/15°C) conditions. At eight days after sowing, plants were exposed to one of the three temperature treatments [OT, high-temperature treatment-1 (HT-1; 33/25°C), and high-temperature treatment-2 (HT-2; 38/30°C)]. The temperature treatment period lasted until the final harvest at 84 days after sowing. Leaf samples were collected at 74 days after sowing to profile lipids using electrospray-ionization triple quadrupole mass spectrometry. Results Temperature treatment significantly affected the growth and development of Avanza 641. Both high-temperature treatments caused alterations in the leaf lipidome. The alterations were primarily manifested in terms of decreases in unsaturation levels of membrane lipids, which was a cumulative effect of lipid remodeling. The decline in unsaturation index was driven by (a) decreases in lipids that contain the highly unsaturated linolenic (18:3) acid and (b) increases in lipids containing less unsaturated fatty acids such as oleic (18:1) and linoleic (18:2) acids and/or saturated fatty acids such as palmitic (16:0) acid. A third mechanism that likely contributed to lowering unsaturation levels, particularly for chloroplast membrane lipids, is a shift toward lipids made by the eukaryotic pathway and the channeling of eukaryotic pathway-derived glycerolipids that are composed of less unsaturated fatty acids into chloroplasts. Conclusions The lipid alterations appear to be acclimation mechanisms to maintain optimal membrane fluidity under high-temperature conditions. The lipid-related mechanisms contributing to heat stress response as identified in this study could be utilized to develop biomarkers for heat tolerance and ultimately heat-tolerant varieties.


2021 ◽  
Vol 15 (8) ◽  
pp. 250-256
Author(s):  
Yimer Ousman ◽  
Mohammed Wassu ◽  
Teju Endale ◽  
Ham Pae Do

EDIS ◽  
2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Ruby Tiwari ◽  
Pratap Devkota ◽  
Michael J. Mulvaney

This publication provides information for predicting emergence timing of common winter weed species for carinata production. Written by Ruby Tiwari, Pratap Devkota, and Michael J. Mulvaney, and published by the UF/IFAS Agronomy Department, June 2021.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1183
Author(s):  
Sylvia Maina ◽  
Da Hye Ryu ◽  
Jwa Yeong Cho ◽  
Da Seul Jung ◽  
Jai-Eok Park ◽  
...  

The effect of salt treatment on Brassica carinata (BC) microgreens grown under different light wavelengths on glucosinolates (GLs) and phenolic compounds were evaluated. Quantifiable GLs were identified using ultra-high performance-quadrupole time of flight mass spectrometry. Extracts’ ability to activate antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)) was evaluated on human colorectal carcinoma cells (HCT116). Furthermore, BC compounds’ ability to activate expression of nuclear transcription factor-erythroid 2 related factor (Nrf2) and heme-oxygenase-1 (HO-1) proteins was examined using specific antibodies on HCT116 cells. Sinigrin (SIN) was the abundant GLs of the six compounds identified and its content together with total aliphatic GLs increased in saline conditions. Fluorescent (FL) and blue plus red (B1R1) lights were identified as stable cultivation conditions for microgreens, promoting biomass and glucobrassicin contents, whereas other identified individual and total indole GLs behaved differently in saline and non-saline environments. Blue light-emitting diodes and FL light in saline treatments mostly enhanced SIN, phenolics and antioxidant activities. The increased SOD and CAT activities render the BC microgreens suitable for lowering oxidative stress. Additionally, activation of Nrf2, and HO-1 protein expression by the GLs rich extracts, demonstrate their potential to treat and prevent oxidative stress and inflammatory disorders. Therefore, effective salt treatments and light exposure to BC microgreens present an opportunity for targeted regulation of growth and accumulation of bioactive metabolites.


Sign in / Sign up

Export Citation Format

Share Document