complex chemistry
Recently Published Documents


TOTAL DOCUMENTS

385
(FIVE YEARS 57)

H-INDEX

39
(FIVE YEARS 4)

2021 ◽  
Vol 8 ◽  
Author(s):  
Weiting Lyu ◽  
David Rodriguez ◽  
Mario G. Ferruzzi ◽  
Giulio M. Pasinetti ◽  
James W. Murrough ◽  
...  

Bioactive dietary polyphenols in grape (Vitis vinifera) have been used in Dietary Supplements (DSs) with the aim to prevent numerous diseases, including cardiovascular and neurodegenerative diseases, and to reduce depression and anxiety. Given prior recognition that DSs can be quality challenged from the purity, authentication, adulteration, and actual concentration of targeted bioactives, to ensure consumer health protection as well as the quality and safety of grape polyphenol-based DSs, the present investigation was aimed at establishing a comprehensive quality control (QC) approach for grape polyphenol-based DSs in support of a human clinical study. In this study, the manufactured grape seed polyphenol extract (GSPE) and trans-resveratrol (RSV) capsules and Concord Grape Juice (CGJ) along with the corresponding original drug materials were analyzed using the developed different liquid chromatography/UV-visible spectroscopy/mass spectrometry (LC/UV-Vis/MS) methods. The weight variation of GSPE and RSV capsules was also evaluated according to the US Pharmacopeia (USP) tests. The results indicate that the total identified polyphenol content in each grape seed extract (GSE) capsule/CGJ is very similar and all GSE/RSV capsules pass the content/weight uniformity test. Given the complexity of these and many botanical products from the issues of purity, quality, adulteration, consistency, and their coupling to the complex chemistry in each grape-derived botanical, quality assurance and the steps needed to ensure grape-derived DSs being well homogeneous and stable and containing the known and expected bioactives at specific concentration ranges are fundamental to any research study and in particular to a clinical trial. Each of these issues is essential to provide a solid foundation upon which clinical trials with botanicals can be conducted with the goal of realizing measurable mental health outcomes such as reducing depression and anxiety as well as understanding of their underlying biological mechanisms.


PLoS Biology ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. e3001475
Author(s):  
Christopher D. Whitewoods

Plants use energy from sunlight to transform carbon dioxide from the air into complex organic molecules, ultimately producing much of the food we eat. To make this complex chemistry more efficient, plant leaves are intricately constructed in 3 dimensions: They are flat to maximise light capture and contain extensive internal air spaces to increase gas exchange for photosynthesis. Many years of work has built up an understanding of how leaves form flat blades, but the molecular mechanisms that control air space formation are poorly understood. Here, I review our current understanding of air space formation and outline how recent advances can be harnessed to answer key questions and take the field forward. Increasing our understanding of plant air spaces will not only allow us to understand a fundamental aspect of plant development, but also unlock the potential to engineer the internal structure of crops to make them more efficient at photosynthesis with lower water requirements and more resilient in the face of a changing environment.


2021 ◽  
Vol 11 (20) ◽  
pp. 9707
Author(s):  
Christoph Gerhard

Even though plasma is the most common state of aggregation in the known universe, its complex chemistry and physics, as well as its specifics and particular characteristics, are not yet fully understood [...]


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6624
Author(s):  
Marco Osvaldo Vigueras-Zúñiga ◽  
Maria Elena Tejeda-del-Cueto ◽  
Syed Mashruk ◽  
Marina Kovaleva ◽  
Cesar Leonardo Ordóñez-Romero ◽  
...  

Recent studies have demonstrated that ammonia is an emerging energy vector for the distribution of hydrogen from stranded sources. However, there are still many unknown parameters that need to be understood before ammonia can be a substantial substitute in fuelling current power generation systems. Therefore, current attempts have mainly utilised ammonia as a substitute for natural gas (mainly composed of methane) to mitigate the carbon footprint of the latter. Co-firing of ammonia/methane is likely to occur in the transition of replacing carbonaceous fuels with zero-carbo options. Hence, a better understanding of the combustion performance, flame features, and radical formation of ammonia/methane blends is required to address the challenges that these fuel combinations will bring. This study involves an experimental approach in combination with numerical modelling to elucidate the changes in radical formation across ammonia/methane flames at various concentrations. Radicals such as OH*, CH*, NH*, and NH2* are characterised via chemiluminescence whilst OH, CH, NH, and NH2 are described via RANS κ-ω SST complex chemistry modelling. The results show a clear progression of radicals across flames, with higher ammonia fraction blends showing flames with more retreated shape distribution of CH* and NH* radicals in combination with more spread distribution of OH*. Simultaneously, equivalence ratio is a key parameter in defining the flame features, especially for production of NH2*. Since NH2* distribution is dependent on the equivalence ratio, CFD modelling was conducted at a constant equivalence ratio to enable the comparison between different blends. The results denote the good qualitative resemblance between models and chemiluminescence experiments, whilst it was recognised that for ammonia/methane blends the combined use of OH, CH, and NH2 radicals is essential for defining the heat release rate of these flames.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gebrekidan Gebresilassie Eshetu ◽  
Heng Zhang ◽  
Xabier Judez ◽  
Henry Adenusi ◽  
Michel Armand ◽  
...  

AbstractRechargeable Li-based battery technologies utilising silicon, silicon-based, and Si-derivative anodes coupled with high-capacity/high-voltage insertion-type cathodes have reaped significant interest from both academic and industrial sectors. This stems from their practically achievable energy density, offering a new avenue towards the mass-market adoption of electric vehicles and renewable energy sources. Nevertheless, such high-energy systems are limited by their complex chemistry and intrinsic drawbacks. From this perspective, we present the progress, current status, prevailing challenges and mitigating strategies of Li-based battery systems comprising silicon-containing anodes and insertion-type cathodes. This is accompanied by an assessment of their potential to meet the targets for evolving volume- and weight-sensitive applications such as electro-mobility.


Author(s):  
Megan Karalus ◽  
Piyush Thakre ◽  
Graham Goldin ◽  
Dustin Brandt

Abstract A Honeywell liquid-fueled gas turbine test combustor, at idle conditions is numerically investigated in Simcenter STAR-CCM+. This work presents Large Eddy Simulation (LES) results using both the Flamelet Generated Manifold (FGM) and Complex Chemistry (CC) combustion models. Both take advantage of a hybrid chemical mechanism (HyChem) which has previously demonstrated very good accuracy for real fuels such as Jet-A with only 47 species. The objective of this work is to investigate the ability of FGM and CC to capture pollutant formation in an aero-engine. Comparisons for NOx, CO, Unburned Hydrocarbons, and Soot are made, along with the radial temperature pro?le. Computational costs are assessed by comparing the performance and scalability of the simulations with each of the combustion models. It is found that the CC case with clustering can reproduce nearly identical results to that without acceleration if CO is added as a clustering variable. With the Lagrangian model settings chosen for this study, the CC results compared more favorably with the experimental data than FGM, however there is uncertainty in the secondary breakup parameters. Sensitivity of the results to a key parameter in the spray breakup model are provided for both FGM and CC. By varying this breakup rate, the FGM case can predict CO, NOx, and Unburned Hydrocarbons equally well. The smoke number, however, is predicted most accurately by CC. The cost for running CC with clustering is found to be about 4 times that of FGM for this combustor and chemical mechanism.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Monalisa Mohanty

Biotechnology plays an important role in mitigation of various pollution in a cost effective manner by using the complex chemistry of living organisms, various cell manipulations and their approaches for environmental cleanup along with environmental sustainability. One such technology is phytoremediation technology or green technology which has emerged and evolved as a novel tool for remediation of toxic contaminants from environment. Plants with its diverse range show a remarkable range of their phytoremediation potentiality for establishing a sustainable environment. There is a huge exploitation of natural resources through expanded industrialization, urbanization, modern agricultural development, energy generation to fulfill the never-ending human desires and need. This disturbs the balance in nature where we reside and leads to progressive deterioration of the environment. There are several biotechnological advances which are employed for combating both the biotic and abiotic stress problems caused due to toxic contaminants in the environment. Various biotechnological interventions such as bioinformatics, proteomics, genomics, metallomics and metabolomics play a crucial role and open new avenue in this context. This omics approach is now integrated with bioinformatics to serve as a novel tool in phytoremediation technology. This smart technology provides insights into the complex behavior of enzymes, proteins and metabolites action and their biochemical pathways for degradation of wastes. This leads towards deriving a sustainable solution for environmental pollution.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1049
Author(s):  
Modesta Trummer ◽  
Erwan Galardon ◽  
Anita Fischer ◽  
Stefan Toegel ◽  
Bernhard-Michael Mayer ◽  
...  

Hydrogen sulfide (H2S) is an important mediator of inflammatory processes. However, controversial findings also exist, and its underlying molecular mechanisms are largely unknown. Recently, the byproducts of H2S, per-/polysulfides, emerged as biological mediators themselves, highlighting the complex chemistry of H2S. In this study, we characterized the biological effects of P*, a slow-releasing H2S and persulfide donor. To differentiate between H2S and polysulfide-derived effects, we decomposed P* into polysulfides. P* was further compared to the commonly used fast-releasing H2S donor sodium hydrogen sulfide (NaHS). The effects on oxidative stress and interleukin-6 (IL-6) expression were assessed in ATDC5 cells using superoxide measurement, qPCR, ELISA, and Western blotting. The findings on IL-6 expression were corroborated in primary chondrocytes from osteoarthritis patients. In ATDC5 cells, P* not only induced the expression of the antioxidant enzyme heme oxygenase-1 via per-/polysulfides, but also induced activation of Akt and p38 MAPK. NaHS and P* significantly impaired menadione-induced superoxide production. P* reduced IL-6 levels in both ATDC5 cells and primary chondrocytes dependent on H2S release. Taken together, P* provides a valuable research tool for the investigation of H2S and per-/polysulfide signaling. These data demonstrate the importance of not only H2S, but also per-/polysulfides as bioactive signaling molecules with potent anti-inflammatory and, in particular, antioxidant properties.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Anne M. Charrier ◽  
Aubin C. Normand ◽  
Ali Passian ◽  
Philip Schaefer ◽  
Aude L. Lereu

AbstractPlant cells are elaborate three-dimensional polymer nano-constructs with complex chemistry. The bulk response of plants to light, in the far-field, is ultimately encoded by optical scattering from these nano-constructs. Their chemical and physical properties may be acquired through their interaction with a modulated nano-tip using scattering scanning near-field optical microscopy. Here, using this technique, we present 20 nm spatial resolution mechanical, spectral and optical mappings of plant cell walls. We first address the problem of plant polymers tracking through pretreatment and processing. Specifically, cellulose and lignin footprints are traced within a set of delignified specimen, establishing the factors hindering complete removal of lignin, an important industrial polymer. Furthermore, we determine the frequency dependent dielectric function $${\epsilon }(\omega)={(n+ik)}^{2}$$ ϵ ( ω ) = ( n + i k ) 2 of plant material in the range 28 ≤ ω ≤ 58 THz, and show how the environmental chemical variation is imprinted in the nanoscale variability of n and k. This nanometrology is a promise for further progress in the development of plant-based (meta-)materials.


Sign in / Sign up

Export Citation Format

Share Document