creep testing
Recently Published Documents


TOTAL DOCUMENTS

344
(FIVE YEARS 51)

H-INDEX

21
(FIVE YEARS 3)

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2044
Author(s):  
Petr Kral ◽  
Jiri Dvorak ◽  
Vaclav Sklenicka ◽  
Zenji Horita ◽  
Yoichi Takizawa ◽  
...  

High-pressure sliding (HPS) and rotary swaging (RS) at room temperature were used to form severely deformed microstructures in martensitic creep-resistant P92 steel. The deformed microstructures contained markedly different ratios of low- and high-angle grain boundaries (LAGBs/HAGBs). The application of the RS method, with an imposed equivalent strain of 1.4, led to the formation of a heterogeneous microstructure with a high number of LAGBs, while the HPS method, with an imposed equivalent strain of 7.8, led to the formation of a relatively homogeneous ultrafine-grained microstructure with a significant predominance of HAGBs. Microstructure analyses after creep testing showed that the microstructure of RS- and HPS-processed P92 steel is quite stable, but a slight coarsening of subgrains and grains during creep testing can be observed. Constant load tensile creep tests at 500 °C and initial stresses ranging from 300 to 900 MPa revealed that the specimens processed by HPS exhibited higher creep strength (slower minimum creep rate) and ductility compared to the coarse-grained and RS-processed P92 steel. However, the HPS-processed P92 steel also exhibited lower values of stress exponent n than the other investigated states of P92 steel. For this reason, the differences in minimum creep rates determined for different states decrease with decreasing values of applied stress, and at applied stresses lower than 500 MPa, the creep resistance of the RS-processed state is higher than the creep resistance of the HPS-processed state.


Author(s):  
Gerald Pilz ◽  
Stefan Wurzer ◽  
Matthias Morak ◽  
Gerald Pinter

AbstractThermoplastic materials are increasingly used in demanding structural applications under, in some cases, long-term static loading over several decades. In this regard, the stepped isothermal method (SIM) with creep testing at stepwise increased temperature levels in combination with time-temperature superposition (TTSP) provides a very time efficient procedure for long-term creep characterization. In the present study, the creep behavior of an injection molded high-density polyethylene material (HDPE) was investigated by SIM in the thermally untreated state as well as after annealing.Due to experimental issues regarding the heating behavior of the specimens and non-linear viscoelastic behavior, particularly at elevated temperatures, bi-directional curve shifting was required in order to generate meaningful master curves for creep compliance. In a first step, an Arrhenius equation was used for the horizontal curve shifting, based on activation energies, determined in additional multi-frequency dynamic mechanical analysis (DMA). Continuous master curves were then obtained by empirical vertical shifting of the individual creep curve segments for the different temperature levels. In general, good agreement was observed between the resulting SIM master curves and the corresponding conventionally measured creep compliance curves at least for a time range up to 300 hours. Furthermore, significant differences in the creep tendency of the annealed material state compared to the thermally untreated condition revealed the distinct influence of the thermal history on the resulting creep behavior.


Author(s):  
Jaime Cano ◽  
Calvin M. Stewart

Abstract In this study, a qualification of accelerated creep-resistance of Inconel 718 is assessed using the novel Wilshire-Cano-Stewart (WCS) model and the stepped isostress method (SSM) and predictions are made to conventional creep data. Conventional creep testing (CCT) is a long-term continuous process, in fact, the ASME B&PV III requires that 10,000+ hours of experiments must be conducted to each heat for materials employed in boilers and/or pressure vessel components. This process is costly and not feasible for rapid development of new materials. As an alternative, accelerated creep testing techniques have been developed to reduce the time needed to characterize the creep resistance of materials. Most techniques are based upon the time-temperature-stress superposition principle (TTSSP) that predicts minimum-creep-strain-rate (MCSR) and stress-rupture behaviors but lack the ability to predict creep deformation and consider deformation mechanisms that occur for experiments of longer duration. The stepped isostress method (SSM) has been developed which enables the prediction of creep deformation response as well as reduce the time needed for qualification of materials. The SSM approach has been successful for polymer, polymeric composites, and recently has been introduced for metals. In this study, the WCS constitutive model, calibrated to SSM test data, qualifies the creep resistance of Inconel 718 at 750°C and predictions are compared to CCT data. The SSM data is calibrated into the model and the WCS model generates realistic predictions of stress-rupture, MSCR, damage, and creep deformation.


2021 ◽  
Author(s):  
Mohammad Ashraful Haq ◽  
Mohd Aminul Hoque ◽  
Jeffrey Suhling ◽  
Pradeep Lall

2021 ◽  
Vol 11 (2) ◽  
pp. 20200174
Author(s):  
Calvin M. Stewart ◽  
Md Abir Hossain ◽  
Jacob Pellicotte ◽  
Robert Mach ◽  
David Alexander ◽  
...  

2021 ◽  
Author(s):  
Jaime A. Cano ◽  
Calvin M. Stewart

Abstract In this study, a qualification of accelerated creep-resistance of Inconel 718 is assessed using the novel Wilshire-Cano-Stewart (WCS) model and the stepped isostress method (SSM) and predictions are made to conventional creep data. Conventional creep testing (CCT) is a long-term continuous process, in fact, the ASME B&PV III requires that 10,000+ hours of experiments must be conducted to each heat for materials employed in boilers and/or pressure vessel components. This process is costly and not feasible for rapid development of new materials. As an alternative, accelerated creep testing techniques have been developed to reduce the time needed to characterize the creep resistance of materials. Most techniques are based upon the time-temperature-stress superposition principle (TTSSP) that predicts minimum-creep-strain-rate (MCSR) and stress-rupture behaviors but lack the ability to predict creep deformation and consider deformation mechanisms that occur for experiments of longer duration. The stepped isostress method (SSM) has been developed which enables the prediction of creep deformation response as well as reduce the time needed for qualification of materials. The SSM approach has been successful for polymer, polymeric composites, and recently has been introduced for metals. In this study, the WCS constitutive model, calibrated to SSM test data, qualifies the creep resistance of Inconel 718 at 750°C and predictions are compared to CCT data. The WCS model has proven to make long-term predictions for stress-rupture, minimum-creep-strain-rate (MCSR), creep deformation, and damage in metallic materials. The SSM varies stress levels after time interval adding damage to the material, which can be tracked by the WCS model. The SSM data is calibrated into the model and the WCS model generates realistic predictions of stress-rupture, MSCR, damage, and creep deformation. The calibrated material constants are used to generate predictions of stress-rupture and are post-audit validated using the National Institute of Material Science (NIMS) database. Similarly, the MCSR predictions are compared from previous studies. Finally the creep deformation predictions are compared with real data and is determined that the results are well in between the expected boundaries. Material characterization and mechanical properties can be determined at a faster rate and with a more cost-effective method. This is beneficial for multiple applications such as in additive manufacturing, composites, spacecraft, and Industrial Gas Turbines (IGT).


Sign in / Sign up

Export Citation Format

Share Document