partially hyperbolic
Recently Published Documents


TOTAL DOCUMENTS

250
(FIVE YEARS 66)

H-INDEX

20
(FIVE YEARS 2)

2022 ◽  
Vol 311 ◽  
pp. 98-157
Author(s):  
José F. Alves ◽  
Wael Bahsoun ◽  
Marks Ruziboev

Nonlinearity ◽  
2021 ◽  
Vol 35 (1) ◽  
pp. 658-680
Author(s):  
Xueting Tian ◽  
Weisheng Wu

Abstract In this paper we define unstable topological entropy for any subsets (not necessarily compact or invariant) in partially hyperbolic systems as a Carathéodory–Pesin dimension characteristic, motivated by the work of Bowen and Pesin etc. We then establish some basic results in dimension theory for Bowen unstable topological entropy, including an entropy distribution principle and a variational principle in general setting. As applications of this new concept, we study unstable topological entropy of saturated sets and extend some results in Bowen (1973 Trans. Am. Math. Soc. 184 125–36); Pfister and Sullivan (2007 Ergod. Theor. Dynam. Syst. 27 929–56). Our results give new insights to the multifractal analysis for partially hyperbolic systems.


2021 ◽  
pp. 1-47
Author(s):  
MARTIN MION-MOUTON

Abstract In this paper, we classify the three-dimensional partially hyperbolic diffeomorphisms whose stable, unstable, and central distributions $E^s$ , $E^u$ , and $E^c$ are smooth, such that $E^s\oplus E^u$ is a contact distribution, and whose non-wandering set equals the whole manifold. We prove that up to a finite quotient or a finite power, they are smoothly conjugated either to a time-map of an algebraic contact-Anosov flow, or to an affine partially hyperbolic automorphism of a nil- ${\mathrm {Heis}}{(3)}$ -manifold. The rigid geometric structure induced by the invariant distributions plays a fundamental part in the proof.


2021 ◽  
pp. 1-26
Author(s):  
AARON BROWN

Abstract Under a suitable bunching condition, we establish that stable holonomies inside center-stable manifolds for $C^{1+\beta }$ diffeomorphisms are uniformly bi-Lipschitz and, in fact, $C^{1+\mathrm {H\ddot{o}lder}}$ . This verifies the ergodicity of suitably center-bunched, essentially accessible, partially hyperbolic $C^{1+\beta }$ diffeomorphisms and verifies that the Ledrappier–Young entropy formula holds for $C^{1+\beta }$ diffeomorphisms of compact manifolds.


2021 ◽  
pp. 1-25
Author(s):  
SHAOBO GAN ◽  
YI SHI ◽  
DISHENG XU ◽  
JINHUA ZHANG

Abstract In this paper, we study the centralizer of a partially hyperbolic diffeomorphism on ${\mathbb T}^3$ which is homotopic to an Anosov automorphism, and we show that either its centralizer is virtually trivial or such diffeomorphism is smoothly conjugate to its linear part.


Author(s):  
Jiagang Yang

Abstract In this article we study physical measures for $\operatorname {C}^{1+\alpha }$ partially hyperbolic diffeomorphisms with a mostly expanding center. We show that every diffeomorphism with a mostly expanding center direction exhibits a geometrical-combinatorial structure, which we call skeleton, that determines the number, basins and supports of the physical measures. Furthermore, the skeleton allows us to describe how physical measures bifurcate as the diffeomorphism changes under $C^1$ topology. Moreover, for each diffeomorphism with a mostly expanding center, there exists a $C^1$ neighbourhood, such that diffeomorphism among a $C^1$ residual subset of this neighbourhood admits finitely many physical measures, whose basins have full volume. We also show that the physical measures for diffeomorphisms with a mostly expanding center satisfy exponential decay of correlation for any Hölder observes. In particular, we prove that every $C^2$ , partially hyperbolic, accessible diffeomorphism with 1-dimensional center and nonvanishing center exponent has exponential decay of correlations for Hölder functions.


Sign in / Sign up

Export Citation Format

Share Document