dispersion equation
Recently Published Documents


TOTAL DOCUMENTS

679
(FIVE YEARS 98)

H-INDEX

46
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Surath Ghosh ◽  
Snehasis Kundu ◽  
Sunil Kumar

Abstract In this study, the effects of time-memory on the mixing and nonequilibrium transportation of particles in an unsteady turbulent flow are investigated. The memory effect of particles is captured through a time-fractional advection-dispersion equation rather than a traditional advection-dispersion equation. The time-fractional derivative is considered in Caputo sense which includes a power-law memory kernel that captures the power-law jumps of particles. The time-fractional model is solved using the Chebyshev collocation method. To make the solution procedure more robust three different kinds of Chebyshev polynomials are considered. The time-fractional derivative is approximated using the finite difference method at small time intervals and numerical solutions are obtained in terms of Chebyshev polynomials. The model solutions are compared with existing experimental data of traditional conditions and satisfactory results are obtained. Apart from this, the effects of time-memory are analyzed for bottom concentration and transient concentration distribution of particles. The results show that for uniform initial conditions, bottom concentration increases with time as the order of fractional derivative decreases. In the case of transient concentration, the value of concentration initially decreases when $T<1$ and thereafter increases throughout the flow depth. The effects of time-memory \textcolor{green}{are} also analyzed under steady flow conditions. Results show that under steady conditions, transient concentration is more sensitive for linear, parabolic, and parabolic-constant models \textcolor{green}{of} sediment diffusivity rather than the constant model.


2021 ◽  
Author(s):  
Thomas TJOCK-MBAGA ◽  
Patrice Ele Abiama ◽  
Jean Marie Ema'a Ema'a ◽  
Germain Hubert Ben-Bolie

Abstract This study derives an analytical solution of a one-dimensional (1D) advection-dispersion equation (ADE) for solute transport with two contaminant sources that takes into account the source term. For a heterogeneous medium, groundwater velocity is considered as a linear function while the dispersion as a nth-power of linear function of space and analytical solutions are obtained for and . The solution in a heterogeneous finite domain with unsteady coefficients is obtained using the Generalized Integral Transform Technique (GITT) with a new regular Sturm-Liouville Problem (SLP). The solutions are validated with the numerical solutions obtained using MATLAB pedpe solver and the existing solution from the proposed solutions. We exanimated the influence of the source term, the heterogeneity parameters and the unsteady coefficient on the solute concentration distribution. The results show that the source term produces a solute build-up while the heterogeneity level decreases the concentration level in the medium. As an illustration, model predictions are used to estimate the time histories of the radiological doses of uranium at different distances from the sources boundary in order to understand the potential radiological impact on the general public.


Author(s):  
Pratibha Verma ◽  
Manoj Kumar ◽  
Anand Shukla

This article introduces the computational analytical approach to solve the m-dimensional space-time variable Caputo fractional order advection–dispersion equation with the Dirichlet boundary using the two-step Adomian decomposition method and obtain the exact solution in just one iteration. Moreover, with the help of fixed point theory, we study the existence and uniqueness conditions for the positive solution and prove some new results. Also, obtain the Ulam–Hyers stabilities for the proposed problem. Two generalized examples are considered to show the method’s applicability and compared with other existing numerical methods. The present method performs exceptionally well in terms of efficiency and simplicity. Further, we solved both examples using the two most well-known numerical methods and compared them with the TSADM solution.


Sign in / Sign up

Export Citation Format

Share Document