leaf rust
Recently Published Documents


TOTAL DOCUMENTS

2043
(FIVE YEARS 417)

H-INDEX

65
(FIVE YEARS 6)

2022 ◽  
Vol 197 ◽  
pp. 103352
Author(s):  
Natacha Motisi ◽  
Pierre Bommel ◽  
Grégoire Leclerc ◽  
Marie-Hélène Robin ◽  
Jean-Noël Aubertot ◽  
...  

2022 ◽  
Vol 20 (1) ◽  
pp. e10SC01-e10SC01
Author(s):  
Anastasiya V. Danilova ◽  

Aim of study: To analyze the structure of Puccinia hordei populations by virulence in southern Russia during 2017-2019. Area of study: South of Russia, the leading Russian region for barley production where barley leaf rust is an important foliar disease. Material and methods: Uredinial samples of P. hordei were collected at the production sites of winter barley in the south of Russia. Single uredinial isolates (total 95) were tested for virulence with 17 differentials with Rph resistance genes. Main results: No isolates found virulent to the host line with the Rph13 gene. There was a decrease in the number of fungal isolates virulent to the host lines with Rph5 and Rph7 genes. In 2017 and 2019, isolates containing a large number of virulence alleles (from 11 to 15) prevailed. In 2018, isolates with low (1-5) and medium (6-10) frequency of virulent alleles prevailed, as well as avirulent isolates. The values of the Nei index via diversity showed high similarity of the pathogen populations in 2017-2018 (N = 0.05) and minor differences in 2017-2019 and 2018-2019 (N = 0.13 and 0.16, respectively). The greatest frequency of virulence alleles in accordance with the Nei (Hs) index was noted for the 2018 population (Hs = 0.36). For the 2017 and 2019 populations, this indicator was average (Hs = 0.29 and 0.20, respectively). Research highlights: Analysis of genetics of the P. hopdei population is important for the strategy of varietal distribution in the region and development of rust-resistant cultivars.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 187
Author(s):  
Fernando Martínez-Moreno ◽  
Patricia Giraldo ◽  
Cristina Nieto ◽  
Magdalena Ruiz

A collection of 84 bread wheat Spanish landraces were inoculated with three isolates of leaf rust and one of yellow rust at the seedling stage in controlled conditions. The latency period of leaf rust on the susceptible landraces was also assessed. An extended collection of 149 landraces was planted in three locations in field trials to evaluate the naturally occurring leaf and yellow rust severity. Several landraces (36) were resistant to one leaf rust isolate at the seedling stage, but only one was resistant to all three isolates. Landraces resistant to PG14 leaf rust isolate originated from areas with higher precipitation and more uniform temperatures. Many resistant landraces were from the north-west zone of Spain, a region with high precipitation and uniform temperatures. Results from the field trials also confirmed this trend. Landraces from the north-west also possessed a longer latency period of leaf rust, an important component of partial resistance. Regarding yellow rust, 16 landraces showed a lower disease severity in the seedling tests. Again, the resistant landraces mostly originated from areas with higher precipitation (especially in winter) and more uniform temperature.


2022 ◽  
Vol 12 ◽  
Author(s):  
Firdissa E. Bokore ◽  
Ron E. Knox ◽  
Colin W. Hiebert ◽  
Richard D. Cuthbert ◽  
Ron M. DePauw ◽  
...  

The hexaploid spring wheat cultivar, Carberry, was registered in Canada in 2009, and has since been grown over an extensive area on the Canadian Prairies. Carberry has maintained a very high level of leaf rust (Puccinia triticina Eriks.) resistance since its release. To understand the genetic basis of Carberry’s leaf rust resistance, Carberry was crossed with the susceptible cultivar, Thatcher, and a doubled haploid (DH) population of 297 lines was generated. The DH population was evaluated for leaf rust in seven field environments at the adult plant stage. Seedling and adult plant resistance (APR) to multiple virulence phenotypes of P. triticina was evaluated on the parents and the progeny population in controlled greenhouse studies. The population was genotyped with the wheat 90 K iSelect single nucleotide polymorphism (SNP) array, and quantitative trait loci (QTL) analysis was performed. The analysis using field leaf rust response indicated that Carberry contributed nine QTL located on chromosomes 1B, 2B (2 loci), 2D, 4A, 4B, 5A, 5B, and 7D. The QTL located on 1B, 2B, 5B, and 7D chromosomes were observed in two or more environments, whereas the remainder were detected in single environments. The resistance on 1B, detected in five environments, was attributed to Lr46 and on 7D, detected in seven environments to Lr34. The first 2B QTL corresponded with the adult plant gene, Lr13, while the second QTL corresponded with Lr16. The seedling analysis showed that Carberry carries Lr2a, Lr16, and Lr23. Five epistatic effects were identified in the population, with synergistic interactions being observed for Lr34 with Lr46, Lr16, and Lr2a. The durable rust resistance of Carberry is attributed to Lr34 and Lr46 in combination with these other resistance genes, because the resistance has remained effective even though the P. triticina population has evolved virulent to Lr2a, Lr13, Lr16, and Lr23.


Plant Disease ◽  
2022 ◽  
Author(s):  
James Kolmer ◽  
Oluseyi Fajolu

Collections of wheat leaves infected with the leaf rust fungus, Puccinia triticina, were obtained from the southeastern states, the Ohio Valley, the Great Plains, and Washington in 2018, 2019 and 2020 to determine the prevalent virulence phenotypes in the wheat growing regions of the United States. In the hard red winter wheat region of the southern and mid Great Plains, MNPSD, and MPPSD were the two most common phenotypes in 2018 and 2019. In 2020 BBBQD with high virulence to durum wheat was the most common phenotype in the southern Great Plains. In the hard red spring wheat region of the northern Great Plains, MNPSD, MPPSD, MBDSD, and TBBGS were the predominant phenotypes. In the soft red winter wheat region of the southeastern states and Ohio Valley region, MBTNB, MCTNB, and MNPSD were the three most common phenotypes. Collections in Washington had phenotypes LBDSG, LCDSG, LCDJG, and MBDSB that were not found in any other region. Isolates with virulence to Lr11 were most frequent in the southeastern states, and Ohio Valley regions. The frequency of isolates with virulence to Lr39 was highest in the Great Plains region and frequency of isolates with virulence to Lr21 was highest in the northern Great Plains region. Selection of virulence phenotypes by leaf rust resistance genes in the different market classes of wheat, combined with the effects of clonal reproduction, overwintering in southern regions, and low migration between the Great Plains region and eastern wheat producing regions, has maintained the different P. triticina populations in the United States.


2022 ◽  
Vol 951 (1) ◽  
pp. 012056
Author(s):  
S Malau ◽  
M R Sihotang

Abstract Coffee leaf rust (CLR) is a pandemic and a serious threat for coffee sustainability in many coffee producing countries. To overcome this CLR, the world’s consensus is to use of resistant cultivars which can be created through coffee breeding program. This research aimed to study genotypic and phenotypic correlations between CLR symptoms of seven arabica coffee (Coffea arabica L.) genotypes that were selected from different districts of North Sumatra Province, Indonesia. This experimental research using a randomized complete block design with three replications was conducted at the experimental garden of the Faculty of Agriculture, Universitas HKBP Nommensen in Medan. The result of this study indicate that leaf rust severity (LRS) had a genotypic component variance of 86.8% which indicated that LRS was controlled more dominantly by plant genetics than other unknown factors. Severity indicated by LRS showed no genotypic and phenotypic correlation with dispersal indicated by branch rust incidence (BRI) and leaf rust incidence (LRI). BRI genotypically correlated with LRI. The results of this study could contribute to resistance coffee breeding for CLR.


2021 ◽  
Vol 28 (49) ◽  
pp. 882-889
Author(s):  
Jó Klanovicz

Resenha de: MCCOOK, Stuart. Coffee is Not Forever: A Global History of Coffee Leaf Rust. Athens: Ohio University Press, 2019. 306 p.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 74
Author(s):  
Alibek Zatybekov ◽  
Yuliya Genievskaya ◽  
Aralbek Rsaliyev ◽  
Akerke Maulenbay ◽  
Gulbahar Yskakova ◽  
...  

In recent years, leaf rust (LR) and stem rust (SR) have become a serious threat to bread wheat production in Kazakhstan. Most local cultivars are susceptible to these rusts, which has affected their yield and quality. The development of new cultivars with high productivity and LR and SR disease resistance, including using marker-assisted selection, is becoming an important priority in local breeding projects. Therefore, the search for key genetic factors controlling resistance in all plant stages, including the seedling stage, is of great significance. In this work, we applied a genome-wide association study (GWAS) approach using 212 local bread wheat accessions that were phenotyped for resistance to specific races of Puccinia triticina Eriks. (Pt) and Puccinia graminis f. sp. tritici (Pgt) at the seedling stages. The collection was genotyped using a 20 K Illumina iSelect SNP assay, and 11,150 polymorphic SNP markers were selected for the association mapping. Using a mixed linear model, we identified 11 quantitative trait loci (QTLs) for five out of six specific races of Pt and Pgt. The comparison of the results from this GWAS with those from previously published work showed that nine out of eleven QTLs for LR and SR resistance had been previously reported in a GWAS study at the adult plant stages of wheat growth. Therefore, it was assumed that these nine common identified QTLs were effective for all-stage resistance to LR and SR, and the two other QTLs appear to be novel QTLs. In addition, five out of these nine QTLs that had been identified earlier were found to be associated with yield components, suggesting that they may directly influence the field performance of bread wheat. The identified QTLs, including novel QTLs found in this study, may play an essential role in the breeding process for improving wheat resistance to LR and SR.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 64
Author(s):  
Nikolaj Meisner Vendelbo ◽  
Khalid Mahmood ◽  
Pernille Sarup ◽  
Mogens S. Hovmøller ◽  
Annemarie Fejer Justesen ◽  
...  

Leaf rust constitutes one of the most important foliar diseases in rye (Secale cereale L.). To discover new sources of resistance, we phenotyped 180 lines belonging to a less well-characterized Gülzow germplasm at three field trial locations in Denmark and Northern Germany in 2018 and 2019. We observed lines with high leaf rust resistance efficacy at all locations in both years. A genome-wide association study using 261,406 informative single-nucleotide polymorphisms revealed two genomic regions associated with resistance on chromosome arms 1RS and 7RS, respectively. The most resistance-associated marker on chromosome arm 1RS physically co-localized with molecular markers delimiting Pr3. In the reference genomes Lo7 and Weining, the genomic region associated with resistance on chromosome arm 7RS contained a large number of nucleotide-binding leucine-rich repeat (NLR) genes. Residing in close proximity to the most resistance-associated marker, we identified a cluster of NLRs exhibiting close protein sequence similarity with the wheat leaf rust Lr1 gene situated on chromosome arm 5DL in wheat, which is syntenic to chromosome arm 7RS in rye. Due to the close proximity to the most resistance-associated marker, our findings suggest that the considered leaf rust R gene, provisionally denoted Pr6, could be a Lr1 ortholog in rye.


2021 ◽  
Vol 12 ◽  
Author(s):  
Men Thi Ngo ◽  
Minh Van Nguyen ◽  
Jae Woo Han ◽  
Bomin Kim ◽  
Yun Kyung Kim ◽  
...  

Microbial metabolites have been recognized as an important source for the discovery of new antifungal agents because of their diverse chemical structures with novel modes of action. In the course of our screening for new antifungal agents from microbes, we found that culture filtrates of two fungal species Aspergillus candidus SFC20200425-M11 and Aspergillus montenegroi SFC20200425-M27 have the potentials to reduce the development of fungal plant diseases such as tomato late blight and wheat leaf rust. From these two Aspergillus spp., we isolated a total of seven active compounds, including two new compounds (4 and 6), and identified their chemical structures based on the NMR spectral analyses: sphaeropsidin A (1), (R)-formosusin A (2), (R)-variotin (3), candidusin (4), asperlin (5), montenegrol (6), and protulactone A (7). Based on the results of the in vitro bioassays of 11 plant pathogenic fungi and bacteria, sphaeropsidin A (1), (R)-formosusin A (2), (R)-variotin (3), and asperlin (5) exhibited a wide range of antimicrobial activity. Furthermore, when plants were treated with sphaeropsidin A (1) and (R)-formosusin A (2) at a concentration of 500 μg/ml, sphaeropsidin A (1) exhibited an efficacy disease control value of 96 and 90% compared to non-treated control against tomato late blight and wheat leaf rust, and (R)-formosusin A (2) strongly reduced the development of tomato gray mold by 82%. Asperlin (5) at a concentration of 500 μg/ml effectively controlled the development of tomato late blight and wheat leaf rust with a disease control value of 95%. Given that culture filtrates and active compounds derived from two Aspergillus spp. exhibited disease control efficacies, our results suggest that the Aspergillus-produced antifungal compounds could be useful for the development of new natural fungicides.


Sign in / Sign up

Export Citation Format

Share Document