incremental loading
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 24)

H-INDEX

12
(FIVE YEARS 2)

Author(s):  
Jiying Fan ◽  
R. Kerry Rowe ◽  
Richard W.I. Brachman

Microstructure showing the involvement of the fine and coarse grains in the soil skeleton is evaluated. Incremental loading tests using a stress-dependent permeameter are conducted on the mixtures of poorly graded sand and nonplastic fines originating from tailings. The results are compared with the published data of various tailings. It is shown that increasing the fines content from 0 to 100%, the involvement of the fine and coarse components of soil skeleton can be classified into four categories: no fines involvement (<10% fines), fines partially involved (10% —35% fines), increasing cushioning effect surrounding the coarse (35% — 40% fines), and constant cushioning effect (> 40% fines). At the same consolidation stress, the void ratio, e, rapidly decreases for fines less than 30%, then almost remains constant between 30% and 50% fines, and gradually increases for fines exceeding 50%. The hydraulic conductivity, k, decreases more than 20-fold as the fines content increases from 12% to 50%, then remains constant. k is proportional to [e3/(1+e)]A and inversely proportional to S2, where A is a factor describing the effect of particle angularity and S is the specific surface. Finally, the influence of fines content on the seepage-induced internal stability is discussed.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8124
Author(s):  
Alejandro Muñoz-López ◽  
Pablo Floría ◽  
Borja Sañudo ◽  
Javier Pecci ◽  
Jorge Carmona Pérez ◽  
...  

Background: The main aim of this study was (1) to find an index to monitor the loading intensity of flywheel resistance training, and (2) to study the differences in the relative intensity workload spectrum between the FW-load and ISO-load. Methods: twenty-one males participated in the study. Subjects executed an incremental loading test in the squat exercise using a Smith machine (ISO-load) or a flywheel device (FW-load). We studied different association models between speed, power, acceleration, and force, and each moment of inertia was used to find an index for FW-load. In addition, we tested the differences between relative workloads among load conditions using a two-way repeated-measures test. Results: the highest r2 was observed using a logarithmic fitting model between the mean angular acceleration and moment of inertia. The intersection with the x-axis resulted in an index (maximum flywheel load, MFL) that represents a theoretical individual maximal load that can be used. The ISO-load showed greater speed, acceleration, and power outcomes at any relative workload (%MFL vs. % maximum repetition). However, from 45% of the relative workload, FW-load showed higher vertical forces. Conclusions: MFL can be easily computed using a logarithmic model between the mean angular acceleration and moment of inertia to characterize the maximum theoretical loading intensity in the flywheel squat.


2021 ◽  
Vol 44 (4) ◽  
pp. 1-18
Author(s):  
Vitor Aguiar ◽  
Maurício Andrade ◽  
Ian Martins ◽  
Jean Rémy ◽  
Paulo Santa Maria

A geotechnical study based on characterization tests and seventy incremental loading onedimensional consolidation tests was carried out on high-quality undisturbed samples taken from Santos Harbor Channel subsoil near to Barnabé Island, where a pilot embankment was built. The characterization profiles revealed a stratigraphy following the pattern described by Massad (2009), with a 9 m-thick fluvial-lagoon-bay sediments (SFL) clay layer. The consolidation tests were performed following two loading criteria. In criterion A (series one tests), a new loading was applied whenever the strain rate (ε) reached 10-6 s-1, the highest integer power of 10 after the “end of primary” consolidation for double drained 2 cm-thick specimens. In criterion B (series two tests), the standard procedure of 24 hour-long stages was adopted. Criterion A reduced the total duration of the consolidation tests from ten to about three days. The preconsolidation (yield) stress (σ’p) and the compressibility parameters Cc and Cr obtained from “e versus σ’v (log)” compression curves of all tests are provided. Series two tests showed that the 24-hour “e versus σ’v (log)” compression curves are translated to the left of the ε = 10-6 s-1 “e versus σ’v (log)” compression curves, keeping Cr and Cc average values unchanged, but decreasing σ’p by about 8%. The SFL clay Cc/(1+e0) values obtained herein are higher than those presented by Massad (2009) due to the higher-quality samples tested in this study. It is shown that it is feasible to carry out a high-quality laboratory test program for design purposes following current standards.


2021 ◽  
Vol 13 (22) ◽  
pp. 12376
Author(s):  
Xingkai Wang ◽  
Leibo Song ◽  
Caichu Xia ◽  
Guansheng Han ◽  
Zheming Zhu

For many rock engineering projects, the stress of surrounding rocks is constantly increasing and decreasing during excavating progress and the long-term operation stage. Herein, the triaxial creep behavior of dolomitic limestone subjected to cyclic incremental loading and unloading was probed using an advanced rock mechanics testing system (i.e., MTS815.04). Then, the instantaneous elastic strain, instantaneous plastic strain, visco-elastic strain, and visco-plastic strain components were separated from the total strain curve, and evolutions of these different types of strain with deviatoric stress increment were analyzed. Furthermore, a damage variable considering the proportion of irrecoverable plastic strain to the total strain was introduced, and a new nonlinear multi-element creep model was established by connecting the newly proposed damage viscous body in series with the Hookean substance, St. Venant body, and Kelvin element. The parameters of this new model were analyzed. The findings are listed as follows: (1) When the deviatoric stress is not more than 75% of the compressive strength, only instantaneous deformation, transient creep, and steady-state creep deformation occur, rock deformation is mainly characterized by the instantaneous strain, whereas the irrecoverable instantaneous plastic strain accounts for 38.02–60.27% of the total instantaneous strain; (2) Greater deviatoric stress corresponds to more obvious creep deformation. The visco-elastic strain increases linearly with the increase of deviatoric stress, especially the irrecoverable visco-plastic strain increases exponentially with deviatoric stress increment, and finally leads to accelerated creep and delayed failure of the sample; (3) Based on the experimental data, the proposed nonlinear creep model is verified to describe the full creep stage perfectly, particularly the tertiary creep stage. These results could deepen our understanding of the elasto-visco-plastic deformation behavior of dolomitic limestone and have theoretical and practical significance for the safe excavation and long-term stability of underground rock engineering.


Author(s):  
Shubham D. Shingade

Abstract: The vertical lode test is conducted on RCC bore pile this test is conducted as per the guidelines of IS 2911 part 4 respectively. This test is conducted on “Perstorp site which is located in dist. -Bharuch Gujrat. In this region the Strata of soil is soft aquifer hence to carry heavy structural load, pile foundation is best solution. The experimental study is carries out on 10 meter length of Bore pile of 500mm in diameter of loading area of 283.5 sq.cm. This paper is based on experimental study on bore pile due to vertical loading condition and expressing the behaviour of pile under the vertical incremental loading condition. And in this paper we follow the approach of analytical and experimental.


Author(s):  
Emil Mejlhede Kinslev ◽  
Ole Hededal ◽  
Irene Rocchi ◽  
Varvara Zania

Accurate prediction of soil deformations is important in unloading as well as loading. Historically, however, the loading scenario has been the most common and thus the most extensively studied phenomenon, leaving unloading less well described. Overconsolidated high plasticity clays are particularly challenging in this regard due to their complex deformation behaviour that has previously shown two conceptually different unloading behaviours. Based on a series of incremental loading and constant rate of strain compression and swelling tests on folded Røsnæs Clay, these unloading behaviours are unified in a framework as different swell modes, and an additional swell mode is identified. These different modes represent a variation in swell inhibiting structure, seemingly unrelated to the structure in compression. The use of constant rate of strain tests greatly enhanced the detailed description of stiffness development in each mode, which may be characterised by up to three swell phases. The parameters governing the occurrence of the swell modes are identified along with the variables that define the transition between the swell phases and their detailed development.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2183
Author(s):  
Aijiu Chen ◽  
Xiaoyan Han ◽  
Zhihao Wang ◽  
Tengteng Guo

Recycling scrap tyres as alternative aggregates of concrete is an innovative option. To clarify the dynamic properties of the pretreated rubberized concrete with some cumulative damage, the natural frequency, flexural dynamic stiffness, and damping ratio of the specimens under incremental stress level were investigated in this paper. The results indicated that the pretreatment of rubber particles improved the strength, ductility, and crack resistance of the rubberized concrete. The reduction of the flexural dynamic stiffness was clarified with the increase of concrete stress level. The addition of the pretreated rubber particles enhanced the concrete energy dissipation capacity during the destruction, and the specimen dissipated more energy with the increase of rubber content before its failure.


2020 ◽  
Vol 22 (4) ◽  
Author(s):  
Giuseppina Recchia ◽  
Vanessa Magnanimo ◽  
Hongyang Cheng ◽  
Luigi La Ragione

AbstractIn this work, Discrete Elements Method simulations are carried out to investigate the effective stiffness of an assembly of frictional, elastic spheres under anisotropic loading. Strain probes, following both forward and backward paths, are performed at several anisotropic levels and the corresponding stress is measured. For very small strain perturbations, we retrieve the linear elastic regime where the same response is measured when incremental loading and unloading are applied. Differently, for a greater magnitude of the incremental strain a different stress is measured, depending on the direction of the perturbation. In the case of unloading probes, the behavior stays elastic until non-linearity is reached.Under forward perturbations, the aggregate shows an intermediate inelastic stiffness, in which the main contribution comes from the normal contact forces. That is, when forward incremental probes are applied the behavior of anisotropic aggregates is an incremental frictionless behavior. In this regime we show that contacts roll or slide so the incremental tangential contact forces are zero. Graphical Abstract


Sign in / Sign up

Export Citation Format

Share Document