napier grass
Recently Published Documents


TOTAL DOCUMENTS

485
(FIVE YEARS 165)

H-INDEX

27
(FIVE YEARS 4)

2022 ◽  
Vol 50 ◽  
pp. 101837
Author(s):  
Khoo Kar Hoo ◽  
Mohamad Syazarudin Md Said
Keyword(s):  

Author(s):  
Negasu Gamachu Dinsa ◽  
Kassahun Desalegn Yalew

Background: The advantage of intercropping is the more efficient utilization of the all available resources and the increased productivity compared with each sole crop of the mixture. If cowpea and Lablab intercropping with Napier grass its nutritional values was improved. Methods: The experimental design was factorial combination arrangement in randomized complete block design with three inter and intra spaces (1 m × 0.5 m, 0.75 m × 0.5 m, 0.5 m × 0.5 m) and intercropping with two tropical legumes. Treatments were T1= Pure Napier grass at 1 m row spacing, T2= Napier grass intercropped with lablab at 0.75 m row spacing, T3= Napier grass intercropped with cowpea at 0.5 m row spacing, T4= Napier grass intercropped with cowpea at 1 m row spacing, T5= Napier grass intercropped with lablab at 0.5 m row spacing, T6= Pure Napier grass at 0.75 m row spacing, T7= Napier grass intercropped with lablab at 1 m row spacing, T8= Napier grass intercropped with cowpea at 0.75 m row spacing, T9= Pure Napier grass at 0.5 m row spacing and totally nine treatments were used. Soil samples were collected before and after forage harvested. Result: Napier grass intercropped with lablab and cowpea at different planting densities had significant effect (P less than 0.05) on the in vitro dry and organic matter digestibility (IVDMD, IVOMD) and increased digestibility. The OM degradation constant was significantly different (P less than 0.05) but ‘ED’ was not and for DM degradation ‘c’ and ‘b’ were non-significant (P greater than 0.05) for Napier grass intercropped with lablab and cowpea at different planting densities. In conclusion, Napier grass intercropped with lablab and cowpea at a planting density of 24 plants m-2 was better choice for high yield and forage quality.


2022 ◽  
Vol 12 ◽  
Author(s):  
Meki S. Muktar ◽  
Ermias Habte ◽  
Abel Teshome ◽  
Yilikal Assefa ◽  
Alemayehu T. Negawo ◽  
...  

Napier grass is the most important perennial tropical grass native to Sub-Saharan Africa and widely grown in tropical and subtropical regions around the world, primarily as a forage crop for animal feed, but with potential as an energy crop and in a wide range of other areas. Genomic resources have recently been developed for Napier grass that need to be deployed for genetic improvement and molecular dissection of important agro-morphological and feed quality traits. From a diverse set of Napier grass genotypes assembled from two independent collections, a subset of 84 genotypes (although a small population size, the genotypes were selected to best represent the genetic diversity of the collections) were selected and evaluated for 2 years in dry (DS) and wet (WS) seasons under three soil moisture conditions: moderate water stress in DS (DS-MWS); severe water stress in DS (DS-SWS) and, under rainfed (RF) conditions in WS (WS-RF). Data for agro-morphological and feed quality traits, adjusted for the spatial heterogeneity in the experimental blocks, were collected over a 2-year period from 2018 to 2020. A total of 135,706 molecular markers were filtered, after removing markers with missing values >10% and a minor allele frequency (MAF) <5%, from the high-density genome-wide markers generated previously using the genotyping by sequencing (GBS) method of the DArTseq platform. A genome-wide association study (GWAS), using two different mixed linear model algorithms implemented in the GAPIT R package, identified more than 35 QTL regions and markers associated with agronomic, morphological, and water-use efficiency traits. QTL regions governing purple pigmentation and feed quality traits were also identified. The identified markers will be useful in the genetic improvement of Napier grass through the application of marker-assisted selection and for further characterization and map-based cloning of the QTLs.


2022 ◽  
Vol 951 (1) ◽  
pp. 012088
Author(s):  
N Umami ◽  
E R V Rahayu ◽  
B Suhartanto ◽  
N Suseno

Abstract An efficient micropropagation method of hybrid Napier grass (Pennisetum purpureumn Schum) for in vitro plant production and material breeding was established from multiple-shoot clumps (MCS) regeneration system. This system was important for forage breeding system. Shoot apices from shoot-tillers produced MSC on Murashige-Skoog (MS) induction medium containing several combinations of BAP and 2,4-D in induction stage. The addition of 5 μM (v/v) and 50 μM (v/v) CuSO4 were added in best medium for inoculation to proliferate the clump in proliferation/multiplication stage. Plant regeneration was achieved by culturing on solid MS with several combination of medium containing NAA and BAP in regeneration stage. The best results for induction were Murashige-Skoog (MS) induction medium containing 2 mgL−1 BAP and 0.1 mgL−1 2,4-D. The proliferation stage on MS medium containing 5 μM CuSÜ4 effective for proliferation (50% multiple shoot formation). The regeneration stage using 0.1 mgL−1 NAA and 2.0 mgL−1 BAP (51.6% number of shoot can regenerate). All plantlets were successfully grown up in an acclimatization stage. Based on the results, the hybrid Napier grass regeneration via MSC was a stable tissue culture system (no albino plats), which could be applied either for further genetic transformation assay or for alternative supply of nursery plant in the future.


2021 ◽  
Vol 5 ◽  
Author(s):  
Solomon Waweru Mwendia ◽  
Ruth Odhiambo ◽  
Alfred Juma ◽  
David Mwangi ◽  
An Notenbaert

Livestock productivity has remained low in sub-Saharan African countries compared to other places on the globe. The feeding component is the major limitation, in both quantity and quality. Among other inputs, feeding takes 55–70% of the costs involved. Livestock play a major role especially in smallholder mixed farms through provision of household nutrition and income through milk and meat. Equally, fertilization of cropland benefits from livestock manure, and livestock often act as insurance and savings by providing liquidity for unforeseen and urgent financial needs. Increasing livestock productivity would enhance the fore-mentioned benefits contributing to well-being and livelihoods. Toward this endeavor and with smallholder dairy farmers' participation, we undertook an evaluation of 10 selected forages from Urochloa Syn. Brachiaria and Megathyrsus syn. Panicum genus and compared them with Napier grass, i.e., Cenchrus purpureus Syn. Pennisetum purpureum commonly grown by farmers. For detailed and robust evaluation, we established the species in eight trial sites spread in four administrative counties in Western Kenya (Bungoma, Busia, Kakamega, and Siaya). In each site, the forages were established in plots in a randomized complete block design, replicated three times. Each site was linked to a group of farmers interested in dairy. For 2 years, dry matter production, plant height, and leaf-to-stem ratio was determined across all sites. Further, we guided farmers to generate participatory forage evaluation criteria, which they later administered across their respective forage demonstration sites individually on plot-by-plot basis to generate preference rating compared to what they normally grow—Napier grass. The results showed significant differences across the forage types within and between the sites. Cumulative dry matter yields ranged 13.7–49.9 t/ha over 10 harvestings across forage types and the counties, while values for crude protein were 1.85–6.23 t/ha and 110,222–375,988 MJ/ha for metabolizable energy. Farmer preferences emerged that highlighted forages with likely better chances of adoption with weighed scores ranging 5.5–7.6 against a scale of 1–9, across the counties. The observations provide additional and well-performing forage options for the farmers and possibly in similar production systems and ecologies. Awareness creation targeting livestock and dairy producers would be key, reaching, and informing them on alternative forage options, with potential to increase livestock productivity.


2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Sutisa Khempaka ◽  
Chayanan Pukkung ◽  
Supattra Okrathok ◽  
Siriporn Chaiyasit ◽  
Arporn Khimkem ◽  
...  

Author(s):  
W. Polviset ◽  
N. Danopas

Background: Agricultural productivity in Southeast Asian countries are important to produce food for human, thus the first priority to improve agricultural productivity is feed and feeding in livestock, especially in ruminants when rice straw and Napier grass are used as the roughage sources; in addition, cassava leaves and Leucaena leaves can be used as the protein sources. Interestingly, the strategy to improve feed in ruminant is through the use of total mixed rations (TMR) which are produced by combination of roughages, concentrates, minerals, vitamins and additives. Methods: During the period 2020-2021 a study with 2 × 2 factorial, in 4 × 4 Latin square design with 21 days per period tested the following TMR’s T1- 5% urea treated rice straw with dried Leucaena leaves, T2- 5% urea treated rice with dried cassava leaves, T3- fermented napier grass with dried Leucaena leaves and the T4- fermented napier grass with dried cassava leaves on voluntary feed intake, nutrient intake and blood metabolites in Black Bengal goats. Result: All treatments did not affect voluntary feed intake (kgDM/head/day and % BW) (P greater than 0.05), but feeding with 5% urea treated rice with dried cassava leaves, it was non significantly higher (0.71 kgDM/day). Furthermore, nutrient intake of organic matter (OM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF) and rumination were not affected among all the four treatments (P greater than 0.05). Additionally, blood glucose, blood urea nitrogen and triglyceride concentrations in plasma were not influenced due to treatments (P greater than 0.05). Nevertheless, Feed cost (USD/kg) was reduced T3 and T4. In conclusion, feeding Black Bengal goat with fermented napier grass with dried Leucaena leaves and fermented napier grass with dried cassava leaves in the TMR were suitable because of the lowest price (0.13 USD/kg) when compared to the other treatments.


2021 ◽  
Vol 13 (24) ◽  
pp. 13520
Author(s):  
Kotchakarn Nantasaksiri ◽  
Patcharawat Charoen-amornkitt ◽  
Takashi Machimura ◽  
Kiichiro Hayashi

Napier grass is an energy crop that is promising for future power generation. Since Napier grass has never been planted extensively, it is important to understand the impacts of Napier grass plantations on local energetic, environmental, and socioeconomic features. In this study, the soil and water assessment tool (SWAT) model was employed to investigate the impacts of Napier grass plantation on runoff, sediment, and nitrate loads in Songkhla Lake Basin (SLB), southern Thailand. Historical data, collected between 2009 and 2018 from the U-tapao gaging station located in SLB were used to calibrate and validate the model in terms of precipitation, streamflow, and sediment. The simulated precipitation, streamflow, and sediment showed agreement with observed data, with the coefficients of determination being 0.791, 0.900, and 0.997, respectively. Subsequently, the SWAT model was applied to evaluate the impact of land use change from the baseline case to Napier grass plantation cases in abandoned areas with four different nitrogen fertilizer application levels. The results revealed that planting Napier grass decreased the average surface runoff and sediment in the watershed. A multidisciplinary assessment supporting future decision making was conducted using the results obtained from the SWAT model; these showed that Napier grass will provide enhanced benefits to hydrology and water quality when nitrogen fertilizers of 0 and 125 kgN ha−1 were applied. On the other hand, the benefits to the energy supply, farmer’s income, and CO2 reduction were highest when a nitrogen fertilization of 500 kgN ha−1 was applied. Nonetheless, planting Napier grass should be supported since it increases the energy supply and creates jobs while also reducing surface runoff, sediment yield, nitrate load, and CO2 emission.


Author(s):  
Kim Lavane ◽  
Nguyễn Thị Hoàng Hạnh ◽  
Phạm Văn Toàn

Nghiên cứu này nhằm đánh giá hiệu suất của đất ngập nước (ĐNN) nhân tạo dòng chảy ngầm theo phương ngang (HSSF) và phương đứng (VF) có vật liệu nền là xỉ than tổ ong và trồng cỏ voi. Thí nghiệm được tiến hành trên mô hình phòng thí nghiệm với lưu lượng nạp của nước thải sinh họat là 85 lít/ngày. Tải lượng nạp BOD5, COD, TN, TP vào mô hình lần lượt là 7,47 g/m2.ngày, 3,17 g/m2.ngày, 1,43 g/m2.ngày, 0,12 g/m2.ngày. Kết quả nghiên cứu cho thấy nồng độ các chỉ tiêu ô nhiễm sau xử lý giảm đáng kể và đạt loại A theo QCVN 14:2008/BTNMT trong cả hai mô hình HSSFCW và VFCW. Hiệu suất xử lý của HSSFCW và VFCW đối với các chỉ tiêu lần lượt là SS: 88,7% và 92,4%; BOD5: 95,3% và 92,6%; COD: 94,3% và 92,6%; TN: 54,1% và 47,5%; N-NO3-: 38,4% và 33,6%; TP: 73,5% và 63,2%; P-PO43-: 87,6% và 59,7%. Nhìn chung, mô hình HSSFCW có hiệu suất loại bỏ các chất ô nhiễm tương đối cao hơn mô hình VFCW, ngoại trừ chỉ tiêu SS. Cỏ voi phát triển tốt và cho sinh khối cao trong thí nghiệm. Từ kết quả nghiên cứu cho thấy xỉ than tổ ong có thể tái sử dụng làm chất nền trong ĐNN nhân tạo dòng chảy ngầm. Bên cạnh đó, cỏ voi có thể trồng trong hệ thống ĐNN dòng chảy ngầm xử lý nước thải sinh hoạt. ABSTRACT This study aimed to evaluate the performances of horizontal subsurface flow (HSSF) and vertical flow (VF) constructed wetlands (CW) using combusted beehive charcoal residues as filtration bed media and planted with Napier grass (Pennisetum purpureum). The experimental systems were fed with a flow rate of 85 m3/day. The loading rates of BOD5, COD, TN, TP into the system were 7.47 g/m2.day, 3.17 g/m2.day, 1.43 g/m2.day, 0.12 g/m2.day, respectively. The results showed that the concentration of pollutants in effluents is significantly reduced and meet the national standard type A of QCVN 14:2008/BTNMT in both HSSFCW and VFCW models. The removal efficiencies in HSSFCW and SVFCW for SS: 88.7% and 92.4%; BOD5: 95.3% and 92.6%; COD: 94.3% and 92.6%; TN: 54.1% and 47.5%; N-NO3-: 38.4% and 33.6%; TP: 73.5% and 63.2%; P-PO43-: 87.6% and 59.7%, respectively. In general, the HSSFCW model has a relatively higher pollutant removal efficiency than the VFCW model, except for the SS. good growth and high biomass yield of Napier grass had been observed in the experimental systems. This study suggested that combusted beehive charcoal residues could be reused as bed substrate in constructed wetlands. Besides, Napier grass might also be a potential plant associated with subsurface flow constructed wetlands to treat domestic wastewater.


Sign in / Sign up

Export Citation Format

Share Document