inventory and monitoring
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 19)

H-INDEX

12
(FIVE YEARS 0)

2021 ◽  
Vol 79 ◽  
pp. 53-63
Author(s):  
Scott N. Zimmer ◽  
Eugene W. Schupp ◽  
Janis L. Boettinger ◽  
Matt C. Reeves ◽  
Eric T. Thacker

Rangelands ◽  
2021 ◽  
Author(s):  
Emily Kachergis ◽  
Scott W. Miller ◽  
Sarah E. McCord ◽  
Melissa Dickard ◽  
Shannon Savage ◽  
...  

Author(s):  
Luke J. Zachmann ◽  
Erin M. Borgman ◽  
Dana L. Witwicki ◽  
Megan C. Swan ◽  
Cheryl McIntyre ◽  
...  

AbstractWe describe the application of Bayesian hierarchical models to the analysis of data from long-term, environmental monitoring programs. The goal of these ongoing programs is to understand status and trend in natural resources. Data are usually collected using complex sampling designs including stratification, revisit schedules, finite populations, unequal probabilities of inclusion of sample units, and censored observations. Complex designs intentionally create data that are missing from the complete data that could theoretically be obtained. This “missingness” cannot be ignored in analysis. Data collected by monitoring programs have traditionally been analyzed using the design-based Horvitz–Thompson estimator to obtain point estimates of means and variances over time. However, Horvitz–Thompson point estimates are not capable of supporting inference on temporal trend or the predictor variables that might explain trend, which instead requires model-based inference. The key to applying model-based inference to data arising from complex designs is to include information about the sampling design in the analysis. The statistical concept of ignorability provides a theoretical foundation for meeting this requirement. We show how Bayesian hierarchical models provide a general framework supporting inference on status and trend using data from the National Park Service Inventory and Monitoring Program as examples. Supplemental Materials Code and data for implementing the analyses described here can be accessed here: https://doi.org/10.36967/code-2287025.


2021 ◽  
Author(s):  
Tim Henderson ◽  
Vincent Santucci ◽  
Tim Connors ◽  
Justin Tweet

A fundamental responsibility of the National Park Service (NPS) is to ensure that park resources are preserved, protected, and managed in consideration of the resources themselves and for the benefit and enjoyment by the public. Through the inventory, monitoring, and study of park resources, we gain a greater understanding of the scope, significance, distribution, and management issues associated with these resources and their use. This baseline of natural resource information is available to inform park managers, scientists, stakeholders, and the public about the conditions of these resources and the factors or activities which may threaten or influence their stability. There are several different categories of geologic or stratigraphic units (supergroup, group, formation, member, bed) which represent a hierarchical system of classification. The mapping of stratigraphic units involves the evaluation of lithologies, bedding properties, thickness, geographic distribution, and other factors. If a new mappable geologic unit is identified, it may be described and named through a rigorously defined process that is standardized and codified by the professional geologic community (North American Commission on Stratigraphic Nomenclature 2005). In most instances when a new geologic unit such as a formation is described and named in the scientific literature, a specific and well-exposed section of the unit is designated as the type section or type locality (see Definitions). The type section is an important reference section for a named geologic unit which presents a relatively complete and representative profile. The type or reference section is important both historically and scientifically, and should be protected and conserved for researchers to study and evaluate in the future. Therefore, this inventory of geologic type sections in NPS areas is an important effort in documenting these locations in order that NPS staff recognize and protect these areas for future studies. The documentation of all geologic type sections throughout the 423 units of the NPS is an ambitious undertaking. The strategy for this project is to select a subset of parks to begin research for the occurrence of geologic type sections within particular parks. The focus adopted for completing the baseline inventories throughout the NPS was centered on the 32 inventory and monitoring networks (I&M) established during the late 1990s. The I&M networks are clusters of parks within a defined geographic area based on the ecoregions of North America (Fenneman 1946; Bailey 1976; Omernik 1987). These networks share similar physical resources (geology, hydrology, climate), biological resources (flora, fauna), and ecological characteristics. Specialists familiar with the resources and ecological parameters of the network, and associated parks, work with park staff to support network level activities (inventory, monitoring, research, data management). Adopting a network-based approach to inventories worked well when the NPS undertook paleontological resource inventories for the 32 I&M networks. The network approach is also being applied to the inventory for the geologic type sections in the NPS. The planning team from the NPS Geologic Resources Division who proposed and designed this inventory selected the Greater Yellowstone Inventory and Monitoring Network (GRYN) as the pilot network for initiating this project. Through the research undertaken to identify the geologic type sections within the parks of the GRYN methodologies for data mining and reporting on these resources were established. Methodologies and reporting adopted for the GRYN have been used in the development of this type section inventory for the Klamath Inventory & Monitoring Network. The goal of this project is to consolidate information pertaining to geologic type sections which occur within NPS-administered areas, in order that this information is available throughout the NPS to inform park managers...


2021 ◽  
Vol 4 (2) ◽  
pp. 31-34
Author(s):  
Ekaterina A. Vasil'eva

The article describes the role of remote sensing technologies in monitoring urban green spaces. The positive aspects of the use of air laser scanning in the inventory and monitoring of urban green spaces are listed. The role of urban green spaces in the formation of an environmentally friendly urban environment is briefly described. Insufficient elaboration of the regulatory and legal documentation in the field of registration of urban green spaces in the Unified State Register of Real Estate Objects was noted. It is emphasized that the lack of approaches to the consideration of urban green spaces as independent cadastral objects entails numerous violations in the field of environmental and environmental legislation of settlements. A solution to this problem is proposed, which consists in the mandatory accounting of cadastral data on the land plot under the urban green spaces when maintaining the urban green spaces monitoring database.


2021 ◽  
Author(s):  
Tim Henderson ◽  
Vincent Santucci ◽  
Tim Connors ◽  
Justin Tweet

A fundamental responsibility of the National Park Service (NPS) is to ensure that park resources are preserved, protected, and managed in consideration of the resources themselves and for the benefit and enjoyment by the public. Through the inventory, monitoring, and study of park resources, we gain a greater understanding of the scope, significance, distribution, and management issues associated with these resources and their use. This baseline of natural resource information is available to inform park managers, scientists, stakeholders, and the public about the conditions of these resources and the factors or activities which may threaten or influence their stability. There are several different categories of geologic or stratigraphic units (supergroup, group, formation, member, bed) which represent a hierarchical system of classification. The mapping of stratigraphic units involves the evaluation of lithologies, bedding properties, thickness, geographic distribution, and other factors. If a new mappable geologic unit is identified, it may be described and named through a rigorously defined process that is standardized and codified by the professional geologic community (North American Commission on Stratigraphic Nomenclature 2005). In most instances when a new geologic unit such as a formation is described and named in the scientific literature, a specific and well-exposed section of the unit is designated as the type section or type locality (see Definitions). The type section is an important reference section for a named geologic unit which presents a relatively complete and representative profile. The type or reference section is important both historically and scientifically, and should be available for other researchers to evaluate in the future. Therefore, this inventory of geologic type sections in NPS areas is an important effort in documenting these locations in order that NPS staff recognize and protect these areas for future studies. The documentation of all geologic type sections throughout the 423 units of the NPS is an ambitious undertaking. The strategy for this project is to select a subset of parks to begin research for the occurrence of geologic type sections within particular parks. The focus adopted for completing the baseline inventories throughout the NPS was centered on the 32 inventory and monitoring networks (I&M) established during the late 1990s. The I&M networks are clusters of parks within a defined geographic area based on the ecoregions of North America (Fenneman 1946; Bailey 1976; Omernik 1987). These networks share similar physical resources (geology, hydrology, climate), biological resources (flora, fauna), and ecological characteristics. Specialists familiar with the resources and ecological parameters of the network, and associated parks, work with park staff to support network level activities (inventory, monitoring, research, data management). Adopting a network-based approach to inventories worked well when the NPS undertook paleontological resource inventories for the 32 I&M networks. The network approach is also being applied to the inventory for the geologic type sections in the NPS. The planning team from the NPS Geologic Resources Division who proposed and designed this inventory selected the Greater Yellowstone Inventory and Monitoring Network (GRYN) as the pilot network for initiating this project. Through the research undertaken to identify the geologic type sections within the parks of the GRYN methodologies for data mining and reporting on these resources was established. Methodologies and reporting adopted for the GRYN have been used in the development of this type section inventory for the Northern Colorado Plateau Inventory & Monitoring Network. The goal of this project is to consolidate information pertaining to geologic type sections which occur within NPS-administered areas, in order that this information is available throughout the NPS...


2021 ◽  
Author(s):  
Tim Henderson ◽  
Mincent Santucci ◽  
Tim Connors ◽  
Justin Tweet

A fundamental responsibility of the National Park Service is to ensure that park resources are preserved, protected, and managed in consideration of the resources themselves and for the benefit and enjoyment by the public. Through the inventory, monitoring, and study of park resources, we gain a greater understanding of the scope, significance, distribution, and management issues associated with these resources and their use. This baseline of natural resource information is available to inform park managers, scientists, stakeholders, and the public about the conditions of these resources and the factors or activities which may threaten or influence their stability. There are several different categories of geologic or stratigraphic units (supergroup, group, formation, member, bed) which represent a hierarchical system of classification. The mapping of stratigraphic units involves the evaluation of lithologies, bedding properties, thickness, geographic distribution, and other factors. If a new mappable geologic unit is identified, it may be described and named through a rigorously defined process that is standardized and codified by the professional geologic community (North American Commission on Stratigraphic Nomenclature 2005). In most instances when a new geologic unit such as a formation is described and named in the scientific literature, a specific and well-exposed section of the unit is designated as the type section or type locality (see Definitions). The type section is an important reference section for a named geologic unit which presents a relatively complete and representative profile for this unit. The type or reference section is important both historically and scientifically, and should be recorded such that other researchers may evaluate it in the future. Therefore, this inventory of geologic type sections in NPS areas is an important effort in documenting these locations in order that NPS staff recognize and protect these areas for future studies. The documentation of all geologic type sections throughout the 423 units of the NPS is an ambitious undertaking. The strategy for this project is to select a subset of parks to begin research for the occurrence of geologic type sections within particular parks. The focus adopted for completing the baseline inventories throughout the NPS was centered on the 32 inventory and monitoring networks (I&M) established during the late 1990s. The I&M networks are clusters of parks within a defined geographic area based on the ecoregions of North America (Fenneman 1946; Bailey 1976; Omernik 1987). These networks share similar physical resources (geology, hydrology, climate), biological resources (flora, fauna), and ecological characteristics. Specialists familiar with the resources and ecological parameters of the network, and associated parks, work with park staff to support network level activities (inventory, monitoring, research, data management). Adopting a network-based approach to inventories worked well when the NPS undertook paleontological resource inventories for the 32 I&M networks. The network approach is also being applied to the inventory for the geologic type sections in the NPS. The planning team from the NPS Geologic Resources Division who proposed and designed this inventory selected the Greater Yellowstone Inventory and Monitoring Network (GRYN) as the pilot network for initiating this project. Through the research undertaken to identify the geologic type sections within the parks of the GRYN, methodologies for data mining and reporting on these resources was established. Methodologies and reporting adopted for the GRYN have been used in the development of this type section inventory for the Chihuahuan Desert Inventory & Monitoring Network. The goal of this project is to consolidate information pertaining to geologic type sections which occur within NPS-administered areas, in order that this information is available throughout the NPS...


2021 ◽  
Author(s):  
Hope Dodd ◽  
David Peitz ◽  
Gareth Rowell ◽  
Janice Hinsey ◽  
David Bowles ◽  
...  

Fish communities are an important component of aquatic systems and are good bioindicators of ecosystem health. Land use changes in the Midwest have caused sedimentation, erosion, and nutrient loading that degrades and fragments habitat and impairs water quality. Because most small wadeable streams in the Heartland Inventory and Monitoring Network (HTLN) have a relatively small area of their watersheds located within park boundaries, these streams are at risk of degradation due to adjacent land use practices and other anthropogenic disturbances. Shifts in the physical and chemical properties of aquatic systems have a dramatic effect on the biotic community. The federally endangered Topeka shiner (Notropis topeka) and other native fishes have declined in population size due to habitat degradation and fragmentation in Midwest streams. By protecting portions of streams on publicly owned lands, national parks may offer refuges for threatened or endangered species and species of conservation concern, as well as other native species. This protocol describes the background, history, justification, methodology, data analysis and data management for long-term fish community monitoring of wadeable streams within nine HTLN parks: Effigy Mounds National Monument (EFMO), George Washington Carver National Monument (GWCA), Herbert Hoover National Historic Site (HEHO), Homestead National Monument of America (HOME), Hot Springs National Park (HOSP), Pea Ridge National Military Park (PERI), Pipestone National Monument (PIPE), Tallgrass Prairie National Preserve (TAPR), and Wilson's Creek national Battlefield (WICR). The objectives of this protocol are to determine the status and long-term trends in fish richness, diversity, abundance, and community composition in small wadeable streams within these nine parks and correlate the long-term community data to overall water quality and habitat condition (DeBacker et al. 2005).


Author(s):  
Sonja Oswalt ◽  
Chris Oswalt ◽  
Alycia Crall ◽  
Robert Rabaglia ◽  
Michael K. Schwartz ◽  
...  

AbstractInventory and monitoring programs and high-quality distribution data are needed to manage invasive species and to develop quantitative ecological, economic, and social impact assessments. Strong inventory and monitoring programs provide valuable insights that help direct efforts to prevent and contain invasive species. Understanding where to focus management efforts, in addition to educational outreach, is key to developing economically efficient and ecologically relevant programs. As noted in Chap. 10.1007/978-3-030-45367-1_2, additional research is needed to address large-scale impacts and co-occurring impacts of multiple invaders. Inventory and monitoring efforts help to inform where this research can be most effectively applied by identifying areas where invasives are most abundant, most likely to spread, or most likely to be contained (Byers et al. 2002; Myers et al. 2000). Furthermore, as climate change continues to pose new and uncertain impacts on ecosystems, monitoring at the edge of invasive species’ ranges will become more important to management efforts (Hellmann et al. 2008).


Sign in / Sign up

Export Citation Format

Share Document