transverse oscillations
Recently Published Documents


TOTAL DOCUMENTS

236
(FIVE YEARS 38)

H-INDEX

31
(FIVE YEARS 4)

Author(s):  
Narges Fathalian ◽  
Seyedeh Somayeh Hosseini Rad ◽  
Nasibeh Alipour ◽  
Hossein Safari

Abstract Here, we study the temperature structure of flaring and non-flaring coronal loops, using extracted loops from images taken in six extreme ultraviolet (EUV) channels recorded by Atmospheric Imaging Assembly (AIA)/ Solar Dynamic Observatory (SDO). We use data for loops of X2.1-class-flaring active region (AR11283) during 22:10UT till 23:00UT, on 2011, September 6; and non-flaring active region (AR12194) during 08:00:00UT till 09:00:00UT on 2014, October 26. By using spatially-synthesized Gaussian DEM forward-fitting method, we calculate the peak temperatures for each strip of the loops. We apply the Lomb-Scargle method to compute the oscillations periods for the temperature series of each strip. The periods of the temperature oscillations for the flaring loops are ranged from 7 min to 28.4 min. These temperature oscillations show very close behavior to the slow-mode oscillation. We observe that the temperature oscillations in the flaring loops are started at least around 10 minutes before the transverse oscillations and continue for a long time duration even after the transverse oscillations are ended. The temperature amplitudes are increased at the flaring time (during 20 min) in the flaring loops. The periods of the temperatures obtained for the non-flaring loops are ranged from 8.5 min to 30 min,but their significances are less (below 0.5) in comparison with the flaring ones (near to one). Hence the detected temperature periods for the non-flaring loops' strips are less probable in comparison with the flaring ones, and maybe they are just fluctuations. Based on our confined observations, it seems that the flaring loops' periods show more diversity and their temperatures have wider ranges of variation than the non-flaring ones. More accurate commentary in this respect requires more extensive statistical research and broader observations.


2021 ◽  
Vol 3 (2) ◽  
pp. 40-51
Author(s):  
V. Fomin ◽  
◽  
I. Fomina ◽  

Periodic longitudinal forces in structural elements caused by operational or seismic influences, at certain values of the parameters of these forces can cause the occurrence and growing of transverse oscillations of these elements. This phenomenon is called parametric resonance or loss of dynamic stability. In the works of N. M. Belyaev, N. M. Krylov, М. М. Bogolyubov, E. Mettler, V. N. Chelomey, V. V. Bolotin flat problems of dynamic stability of frame structures were investigated. In this paper the modified Bolotin’s method, proposed to solve flat problems of dynamic stability of frames, is used. Instead of the deformation method used by V. V. Bolotin to construct analytical expressions of deflections of frame rods, in the modified method the numerical-analytical method of boundary elements is used. The article proposes a method for constructing domains of dynamic instability of frames in the space of parameters (frequency and amplitude) of seismic and operational dynamic influences that cause longitudinal forces in the rods, which periodically change over time and lead to unlimited growth of transverse oscillations amplitudes in the domains of instability. The proposed method is demonstrated in example, which considers the spatial problem of dynamic stability of a П-shaped frame with two concentrated masses located on it, which are under the action of vertical periodic forces. These forces create periodic longitudinal forces in the vertical rods of the frame. Areas of dynamic instability of the frame were constructed. Taking into account the destructive effect of oscillations is important for practical application. The most dangerous destructive effect of oscillations is observed in earthquakes and explosions. The study of this action makes it possible to avoid undesirable consequences of oscillations by limiting their level and to solve important practical problems of the dynamics of structures. Solving dynamics problems is a difficult problem. Dynamic calculation of structures provides their bearing capacity under the combined action of static and dynamic loads.


2021 ◽  
Vol 923 (1) ◽  
pp. 74
Author(s):  
Jun Dai ◽  
Qingmin Zhang ◽  
Yanjie Zhang ◽  
Zhe Xu ◽  
Yingna Su ◽  
...  

Abstract In this paper, we present a multiwavelength analysis to mass draining and oscillations in a large quiescent filament prior to its successful eruption on 2015 April 28. The eruption of a smaller filament that was parallel and in close, ∼350″ proximity was observed to induce longitudinal oscillations and enhance mass draining within the filament of interest. The longitudinal oscillation with an amplitude of ∼25 Mm and ∼23 km s−1 underwent no damping during its observable cycle. Subsequently the slightly enhanced draining may have excited a eruption behind the limb, leading to a feedback that further enhanced the draining and induced simultaneous oscillations within the filament of interest. We find significant damping for these simultaneous oscillations, where the transverse oscillations proceeded with the amplitudes of ∼15 Mm and ∼14 km s−1, while the longitudinal oscillations involved a larger displacement and velocity amplitude (∼57 Mm, ∼43 km s−1). The second grouping of oscillations lasted for ∼2 cycles and had a similar period of ∼2 hr. From this, the curvature radius and transverse magnetic field strength of the magnetic dips supporting the filaments can be estimated to be ∼355 Mm and ≥34 G. The mass draining within the filament of interest lasted for ∼14 hr. The apparent velocity grew from ∼35 to ∼85 km s−1, with the transition being coincident with the occurrence of the oscillations. We conclude that two filament eruptions are sympathetic, i.e., the eruption of the quiescent filament was triggered by the eruption of the nearby smaller filament.


2021 ◽  
Vol 922 (1) ◽  
pp. 60
Author(s):  
Mijie Shi ◽  
Tom Van Doorsselaere ◽  
Patrick Antolin ◽  
Bo Li

Abstract We simulate transverse oscillations in radiatively cooling coronal loops and forward-model their spectroscopic and imaging signatures, paying attention to the influence of background emission. The transverse oscillations are driven at one footpoint by a periodic velocity driver. A standing kink wave is subsequently formed and the loop cross section is deformed due to the Kelvin–Helmholtz instability, resulting in energy dissipation and heating at small scales. Besides the transverse motions, a long-period longitudinal flow is also generated due to the ponderomotive force induced slow wave. We then transform the simulated straight loop to a semi-torus loop and forward-model their spectrometer and imaging emissions, mimicking observations of Hinode/EIS and SDO/AIA. We find that the oscillation amplitudes of the intensity are different at different slit positions, but are roughly the same in different spectral lines or channels. X-t diagrams of both the Doppler velocity and the Doppler width show periodic signals. We also find that the background emission dramatically decreases the Doppler velocity, making the estimated kinetic energy two orders of magnitude smaller than the real value. Our results show that background subtraction can help recover the real oscillation velocity. These results are helpful for further understanding transverse oscillations in coronal loops and their observational signatures. However, they cast doubt on the spectroscopically estimated energy content of transverse waves using the Doppler velocity.


2021 ◽  
Vol 43 (5) ◽  
pp. 43-54
Author(s):  
V.V. Dolinenko ◽  
◽  
E.V. Shapovalov ◽  
V.A. Kolyada ◽  
T.G. Skuba ◽  
...  

A functional transformer with fuzzy logic is synthesized, which allows to get the estimations of weld beads height and width at the arbitrary values of entry parameters: wire feed speed and torch transverse oscillations amplitude. The influence of these input parameters on the base metal penetration and beads geometric parameters, welded using MIG/MAG process, were studied. Surfacing was performed by a robotic system with an arc power supply "Fronius TPS- 320i", which operated in the mode of arc process synergetic control. The formation of both individual beads and surfacing layers at different overlap coefficients has been studied. The arc surfacing process was realized in a mixture of protective gases (Ar+18%CO2) using a welding wire Св-08Г2С with a 1.0 mm diameter. Surfacing speed – 4 mm/s, frequency of welding torch oscillations – 1 Hz. The obtained experimental dependences of beads width and height, as well as the length of the welding pool can be used in both: creating of multi-pass MIG/MAG surfacing program for robotic restoration of critical purposes parts surfaces, and in preparing of FEM model of MIG/MAG surfacing.


Author(s):  
Mudasir Younis ◽  
Deepak Singh ◽  
Ishak Altun ◽  
Varsha Chauhan

Abstract The purpose of this article is to present the notion of graphical extended b-metric spaces, blending the concepts of graph theory and metric fixed point theory. We discuss the structure of an open ball of the new proposed space and elaborate on the newly introduced ideas in a novel way by portraying suitably directed graphs. We also provide some examples in graph structure to show that our results are sharp as compared to the results in the existing state-of-art. Furthermore, an application to the transverse oscillations of a homogeneous bar is entrusted to affirm the applicability of the established results. Additionally, we evoke some open problems for enthusiastic readers for the future aspects of the study.


Sign in / Sign up

Export Citation Format

Share Document