improved ant colony algorithm
Recently Published Documents


TOTAL DOCUMENTS

506
(FIVE YEARS 148)

H-INDEX

15
(FIVE YEARS 5)

2022 ◽  
pp. 1-10
Author(s):  
Huixian Wang ◽  
Hongjiang Zheng

This paper proposes a deep mining method of high-dimensional abnormal data in Internet of things based on improved ant colony algorithm. Preprocess the high-dimensional abnormal data of the Internet of things and extract the data correlation feature quantity; The ant colony algorithm is improved by updating the pheromone and state transition probability; With the help of the improved ant colony algorithm, the feature response signal of high-dimensional abnormal data in Internet of things is extracted, the judgment threshold of high-dimensional abnormal data in Internet of things is determined, and the objective function is constructed to optimize the mining depth, so as to realize the deep data mining. The results show that the average error of the proposed method is only 0.48%.


2022 ◽  
Vol 355 ◽  
pp. 03002
Author(s):  
Hongchao Zhao ◽  
Jianzhong Zhao

Aiming at the problems of long search time and local optimal solution of ant colony algorithm (ACA) in the path planning of unmanned aerial vehicle (UAV), an improved ant colony algorithm (IACA) was proposed from the aspects of simplicity and effectiveness. The flight performance constraints of fixed wing UAVs were treated as conditions of judging whether the candidate expanded nodes are feasible, thus the feasible nodes’ number was reduced and the search efficiency was effectively raised. In order to overcome the problem of local optimal solution, the pheromone update rule is improved by combining local pheromone update and global pheromone update. The heuristic function was improved by integrating the distance heuristic factor with the safety heuristic factor, and it enhanced the UAV flight safety performance. The transfer probability was improved to increase the IACA search speed. Simulation results show that the proposed IACA possesses stronger global search ability and higher practicability than the former IACA.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fengtao Xiang ◽  
Keqin Chen ◽  
Jiongming Su ◽  
Hongfu Liu ◽  
Wanpeng Zhang

Unmanned aerial vehicles (UAVs) are gradually used in logistics transportation. They are forbidden to fly in some airspace. To ensure the safety of UAVs, reasonable path planning and design is one of the key factors. Aiming at the problem of how to improve the success rate of unmanned aerial vehicle (UAV) maneuver penetration, a method of UAV penetration path planning and design is proposed. Ant colony algorithm has strong path planning ability in biological swarm intelligence algorithm. Based on the modeling of UAV planning and threat factors, improved ant colony algorithm is used for UAV penetration path planning and design. It is proposed that the path with the best pheromone content is used as the planning path. Some principles are given for using ant colony algorithm in UAV penetration path planning. By introducing heuristic information into the improved ant colony algorithm, the convergence is completed faster under the same number of iteratives. Compared with classical methods, the total steps reduced by 56% with 50 ant numbers and 200 iterations. 62% fewer steps to complete the first iteration. It is found that the optimal trajectory planned by the improved ant colony algorithm is smoother and the shortest path satisfying the constraints.


2021 ◽  
pp. 1-16
Author(s):  
Longzhen Zhai ◽  
Shaohong Feng

The optimal evacuation route in emergency evacuation can further reduce casualties. Therefore, path planning is of great significance to emergency evacuation. Aiming at the blindness and relatively slow convergence speed of ant colony algorithm path planning search, an improved ant colony algorithm is proposed by combining artificial potential field and quantum evolution theory. On the one hand, the evacuation environment of pedestrians is modeled by the grid method. Use the potential field force in the artificial potential field, the influence coefficient of the potential field force heuristic information, and the distance between the person and the target position in the ant colony algorithm to construct comprehensive heuristic information. On the other hand, the introduction of quantum evolutionary theory. The pheromone is represented by quantum bits, and the pheromone is updated by quantum revolving door feedback control. In this way, it can not only reflect the high efficiency of quantum parallel computing, but also have the better optimization ability of ant colony algorithm. A large number of simulation experiments show that the improved ant colony algorithm has a faster convergence rate and is more effective in evacuation path planning.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Qingkui Cao ◽  
Xuefei Zhang ◽  
Xiangyang Ren

With the development of e-commerce and information technology, new modes of distribution are emerging. A new type of distribution tool, UAV (unmanned aerial vehicle), has entered into the public’s field of vision. In the background of growing e-commerce, this paper proposes a new delivery mode of joint delivery of trucks and UAVs which particularly has been popular in recent years, with the advantages of prompt delivery, low cost, and independence from terrain restrictions, while traditional transportation tools such as trucks have more advantages in terms of flight distance and load capacity. Therefore, the joint delivery mode of trucks and UAVs proposed in this paper can well realize the complementary advantages of trucks and UAVs in the distribution process and consequently optimize the distribution process. Moreover, the growing e-commerce promotes customers’ higher needs for delivery efficiency and the integrity of the delivered goods which urges companies to pay more attention to customers’ satisfaction. This paper analyzes the joint delivery mode of trucks and UAVs, aims to minimize total delivery cost and maximize customer satisfaction, and builds a multiobjective optimization model for joint delivery. Furthermore, an improved ant colony algorithm is proposed in order to solve the mode in this paper. In order to effectively avoid prematurity of the ant colony algorithm, the limited pheromone concentration and the classification idea of the artificial bee colony algorithm are introduced to improve the ant colony algorithm. Finally, some experiments are simulated by MATLAB software, and the comparison shows that the joint delivery of trucks and UAVs has more advantages, and the improved ant colony algorithm is more efficient than the traditional ant colony.


Sign in / Sign up

Export Citation Format

Share Document