sensing characteristics
Recently Published Documents


TOTAL DOCUMENTS

1407
(FIVE YEARS 322)

H-INDEX

68
(FIVE YEARS 10)

2022 ◽  
Author(s):  
Jonas Mahlknecht ◽  
Günter Wuzella ◽  
Herfried Lammer ◽  
Mohammed Khalifa

Herein, surfactant-assisted PANI nanorods was synthesized via the solid-state synthesis method at different concentrations of sodium lauryl sulfate (SLS). Upon the addition of SLS, the average rod diameter of PANI...


Author(s):  
zhiyong yin ◽  
Xili Jing ◽  
Yuhui Feng ◽  
Zhigang Gao ◽  
Biao Wu ◽  
...  

Abstract A twin-core photonic crystal fiber sensor is proposed for measuring liquid refractive index (RI) and temperature simultaneously. The air holes of the sensor are arranged in a hexagonal pattern, and two planes are introduced by polishing in the cladding. On one side of the plane, the gold film is deposited for RI measurement, and on the other side, the gold film and polydimethylsiloxane (PDMS) are deposited for temperature measurement. We analyzed its sensing characteristics by using finite element method. The numerical results show that the two channels for measuring RI and temperature have no mutual interference. It reduces the complexity of the sensing measurement. The maximum spectral sensitivity of the sensor is 20000 nm/RIU and 9.2 nm/℃, respectively, when the liquid RI is in the range of 1.36-1.42 and the temperature is in the range of 0-50 ℃. The results also show the sensing accuracy was not very sensitive to the change of structural parameters. It hence makes the sensor be easy to fabricate. Our work is very helpful for implementation of a high sensitivity, easy fabrication and real-time multi-parameter SPR sensor.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 61
Author(s):  
Sachin Navale ◽  
Ali Mirzaei ◽  
Sanjit Manohar Majhi ◽  
Hyoun Woo Kim ◽  
Sang Sub Kim

This review presents the results of cutting-edge research on chemiresistive gas sensors in Korea with a focus on the research activities of the laboratories of Professors Sang Sub Kim and Hyoun Woo Kim. The advances in the synthesis techniques and various strategies to enhance the gas-sensing performances of metal-oxide-, sulfide-, and polymer-based nanomaterials are described. In particular, the gas-sensing characteristics of different types of sensors reported in recent years, including core–shell, self-heated, irradiated, flexible, Si-based, glass, and metal–organic framework sensors, have been reviewed. The most crucial achievements include the optimization of shell thickness in core–shell gas sensors, decrease in applied voltage in self-heated gas sensors to less than 5 V, optimization of irradiation dose to achieve the highest response to gases, and the design of selective and highly flexible gas sensors-based WS2 nanosheets. The underlying sensing mechanisms are discussed in detail. In summary, this review provides an overview of the chemiresistive gas-sensing research activities led by the corresponding authors of this manuscript.


YMER Digital ◽  
2021 ◽  
Vol 20 (12) ◽  
pp. 504-509
Author(s):  
C. K Nanhey ◽  
◽  
M. K Bhanarkar ◽  
B. M. Sargar ◽  
◽  
...  

Since many years, metal oxide semiconductor has paid too much interest as a gas sensing material by researchers because of wide performance. TiO2 is one of the majority crucial metal oxide which produced better performance in thin film development. Advanced spray pyrolysis system was used to develop thin film. The gas sensing characteristics TiO2 films are evaluated with responses. The gas sensing response, electrical characterization and sensitivity are corporate.


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3146
Author(s):  
Yi-Pin Chen ◽  
Anisha Roy ◽  
Ping-Hsuan Wu ◽  
Shih-Yin Huang ◽  
Siddheswar Maikap

Dopamine detection by using N2/O2 annealing in a Pt/Ti/n-Si structure is investigated for the first time. To achieve repeatable and stable dopamine detection, a Pt membrane is annealed at elevated temperatures of 500 to 700 °C. N2/O2 gas ambient is used to optimize the membrane. The Pt membrane with thicknesses from 5 to 2 nm is optimized. Novel Pt/Ti/n-Si Schottky contact in a metal–electrolyte–membrane–silicon (MEMS) structure detects dopamine with a low concentration of 1 pM. The Pt membrane with N2 ambient annealing shows the lowest concentration of dopamine sensing with a small volume of 10 µL, acceptable stability, and repeatability. Scan rate-dependent dopamine concentration sensing is also investigated in the two-terminal measurement method. This study is useful for the early diagnosis of Parkinson’s disease in the near future.


Chemosensors ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 351
Author(s):  
Jung-Chuan Chou ◽  
Yu-Hao Huang ◽  
Po-Yu Kuo ◽  
Chih-Hsien Lai ◽  
Yu-Hsun Nien ◽  
...  

In this research, we proposed a potentiometric sensor based on copper doped zinc oxide (CZO) films to detect glucose. Silver nanowires were used to improve the sensor’s average sensitivity, and we used the low power consumption instrumentation amplifier (UGFPCIA) designed by our research group to measure the sensing characteristics of the sensor. It was proved that the sensor performs better when using this system. In order to observe the stability of the sensor, we also studied the influence of two kinds of non-ideal effects on the sensor, such as the drift effect and the hysteresis effect. For this reason, we chose to combine the calibration readout circuit with the voltage-time (V-T) measurement system to optimize the measurement environment and successfully reduced the instability of the sensor. The drift rate was reduced by about 51.1%, and the hysteresis rate was reduced by 13% and 28% at different measurement cycles. In addition, the characteristics of the sensor under dynamic conditions were also investigated, and it was found that the sensor has an average sensitivity of 13.71 mV/mM and the linearity of 0.998 at a flow rate of 5.6 μL/min.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012040
Author(s):  
Laith Saheb ◽  
Tagreed M. Al-Saadi

Abstract This study includes the preparation of novel nano ferrite (Zn0.7 Mn0.3-x Cex Fe2O4) by using the auto combustion technique. For the following molar values, the percentage x was calculated: 0.0, 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3. The nano-ferrite was calcined for 2 hours at 500°C. The energy dispersive x-ray spectroscopy (EDX), X-ray diffraction (XRD) and field emission scanning electron microscopy FE-SEM was used to examine structural, morphological, and sensing properties. The spinel cubic structure was revealed by XRD findings. The particle distribution was shown to contain voids by FE-SEM. The testing of sensing characteristics to NH3 gas indicated that the synthesized nano-ferrite has a small response time ranging from (15.3-25.2) s as well as a small recovery time between (36-58.5) s, also has a higher sensitivity of about 72.23%.


Sign in / Sign up

Export Citation Format

Share Document