seed setting rate
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 21)

H-INDEX

5
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Jing You ◽  
Qiannan Duan ◽  
Jun Zhang ◽  
Wenqiang Shen ◽  
Yue Zhou ◽  
...  

Abstract The lemma and palea are floral organ structures unique to grasses, and their development affects grain size. However, information on the molecular mechanism of lemma development is limited. In this study, we investigated a rice spikelet mutant, degenerated lemma (del), which developed florets with a slightly degenerated or rod-like lemma. The results indicate that the mutation of the DEL gene interfered with lemma development. In addition, del also showed a significant reduction in grain length and width, seed setting rate, and 1000-grain weight, which led to a reduction in yield. The results indicate that the mutation of the DEL gene further affects rice grain yield. Map-based cloning shows a single-nucleotide substitution from T to A within Os01g0527600/DEL, causing an amino acid mutation of Leu-34 to His-34 in the del mutant. DEL is an allele of OsRDR6, encoding the RNA-dependent RNA polymerase 6, and is highly expressed in the spikelet. RT-qPCR results show that the expression of some floral organ identity genes was changed, which indicates that the DEL gene regulates lemma development by modulating the expression of these genes. The present results suggest that DEL plays an important role in lemma development and rice grain yield.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yixin Guo ◽  
Shuai Li ◽  
Zhanguo Zhang ◽  
Yang Li ◽  
Zhenbang Hu ◽  
...  

The rice seed setting rate (RSSR) is an important component in calculating rice yields and a key phenotype for its genetic analysis. Automatic calculations of RSSR through computer vision technology have great significance for rice yield predictions. The basic premise for calculating RSSR is having an accurate and high throughput identification of rice grains. In this study, we propose a method based on image segmentation and deep learning to automatically identify rice grains and calculate RSSR. By collecting information on the rice panicle, our proposed image automatic segmentation method can detect the full grain and empty grain, after which the RSSR can be calculated by our proposed rice seed setting rate optimization algorithm (RSSROA). Finally, the proposed method was used to predict the RSSR during which process, the average identification accuracy reached 99.43%. This method has therefore been proven as an effective, non-invasive method for high throughput identification and calculation of RSSR. It is also applicable to soybean yields, as well as wheat and other crops with similar characteristics.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Sujuan Xu ◽  
Ze Wu ◽  
Huizhong Hou ◽  
Jingya Zhao ◽  
Fengjiao Zhang ◽  
...  

AbstractDistant hybridization is widely used to develop crop cultivars, whereas the hybridization process of embryo abortion often severely reduces the sought-after breeding effect. The LEAFY COTYLEDON1 (LEC1) gene has been extensively investigated as a central regulator of seed development, but it is far less studied in crop hybridization breeding. Here we investigated the function and regulation mechanism of CmLEC1 from Chrysanthemum morifolium during its seed development in chrysanthemum hybridization. CmLEC1 encodes a nucleic protein and is specifically expressed in embryos. CmLEC1’s overexpression significantly promoted the seed-setting rate of the cross, while the rate was significantly decreased in the amiR-CmLEC1 transgenic chrysanthemum. The RNA-Seq analysis of the developing hybrid embryos revealed that regulatory genes involved in seed development, namely, CmLEA (late embryogenesis abundant protein), CmOLE (oleosin), CmSSP (seed storage protein), and CmEM (embryonic protein), were upregulated in the OE (overexpressing) lines but downregulated in the amiR lines vs. wild-type lines. Future analysis demonstrated that CmLEC1 directly activated CmLEA expression and interacted with CmC3H, and this CmLEC1–CmC3H interaction could enhance the transactivation ability of CmLEC1 for the expression of CmLEA. Further, CmLEC1 was able to induce several other key genes related to embryo development. Taken together, our results show that CmLEC1 plays a positive role in the hybrid embryo development of chrysanthemum plants, which might involve activating CmLEA’s expression and interacting with CmC3H. This may be a new pathway in the LEC1 regulatory network to promote seed development, one perhaps leading to a novel strategy to not only overcome embryo abortion during crop breeding but also increase the seed yield.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Haowen Luo ◽  
Yulin Chen ◽  
Longxin He ◽  
Xiangru Tang

Abstract Background Lanthanum (La) is a rare earth element that can influence plant growth and development. However, the effect of La on growth, yield formation and 2-acetyl-1-pyrroline (2-AP, a key compound responsible for the aroma of rice) biosynthesis in aromatic rice (Oryza sativa L. subsp. japonica Kato) has not been reported. Therefore, the present study investigated the effects of La on growth, photosynthesis, yield formation and 2-AP biosynthesis in aromatic rice through three experiments. Results Two pot experiments and a two-year field trial were conducted with different rates of La application (20–120 LaCl3 mg kg−1 and 12 kg ha−1 LaCl3), and treatments without La application were used as controls. The results showed that the application of LaCl3 at 80 and 100 mg kg−1 and at 12 kg ha−1 greatly increased the 2-AP content (by 6.45–43.03%) in aromatic rice seedlings and mature grains compared with the control. The La treatments also increased the chlorophyll content, net photosynthetic rate and total aboveground biomass of rice seedlings. Higher antioxidant enzyme (superoxide, peroxidase, and catalase) activity was detected in the La treatments than in the control. The La treatments also increased the grain yield, grain number per panicle and seed-setting rate of aromatic rice relative to the control. Moreover, the grain proline and γ-aminobutyric acid contents and the activity of betaine aldehyde dehydrogenase significantly decreased under the La treatment. The application of La to soil enhanced the activity of proline dehydrogenase by 20.62–56.95%. Conclusions La improved the growth, yield formation and 2-AP content of aromatic rice and enhanced 2-AP biosynthesis by increasing the conversion of proline to 2-AP and decreasing the conversion of GABald to GABA.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 557
Author(s):  
Asif Ali ◽  
Jiaji Zhang ◽  
Minmin Zhou ◽  
Tingting Chen ◽  
Liaqat Shah ◽  
...  

Liriodendron hybrid (L. chinense × L. tulipifera), an essential medium-sized tree generally famous for its timber, is also used as an ornamental and greenery tool in many places around the world. The Liriodendron hybrid (L. hybrid) tree goes through many hurdles to achieve its maximum strength and vigor, such as loss of habitat, vast genetic variation, and low seed setting rate. The establishment of an effective and well-organized somatic embryogenesis (S.E.) system could be used to overcome these obstacles, rather than the old-fashioned seed culture and organogenesis. This study is based on the impact of chitosan oligosaccharide (COS) and its role in the induction of S.E. on the callus of four genotypes of the L. hybrid. The optimal concentration of COS could enhance the momentum and effectiveness in S.E.’s mechanism, which further improves the growth rate of the L. hybrid tree’s plantlets. This study shows that COS has a prominent role in endogenous hormones like indole acetic acid (IAA), zeatin (Z.T.), and gibberellic acid (GA3). Furthermore, COS improves the growth development, growth speed, as well as the development situation of plant germination ability. COS can also regulate branch development and root growth, which could be linked to the antagonistic effect on growth factors to some extent or by affecting auxin synthesis and polar transport.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 302
Author(s):  
Yan Lan ◽  
Xiaodong Sui ◽  
Jin Wang ◽  
Qiang Duan ◽  
Chaoyue Wu ◽  
...  

Low-gluten rice cultivar D105 was grown in the field under five nitrogen (N) treatments (N0: 0, N90: 90, N135: 135, N180: 180, and N225: 225 kg·hm−2) to investigate the effect of N application rate on the yield and the resulting dynamic changes in protein content, grain processing quality, and relative content of each component protein. The results indicated that the number of effective panicles, seed setting rate, the number of solid grains, dry matter, leaf nitrate reductase and glutamine synthetase activities, and yield increased with N application rate ranging from 0 to 180 kg·hm−2. However, the seed setting rate and the number of solid grains decreased under N225 treatment, leading to a decline in yield. At maturity, 35 days after flowering, no significant differences between albumin and gliadin in the rice grain were found among the N treatments, while globulin and gluten differed among treatments, indicating that the effect of N application rate on the former was slightly the opposite to that observed on the latter. Further, the N application rates did not change the proportions of component proteins relative to the total protein content in the grain. Processing and taste qualities of D105 low-gluten rice were optimal in the N135 and N180 treatments, and the overall rice quality decreased under the N225 treatment. Therefore, the optimal N application rate for yield and processing quality of D105 low-gluten rice is N180: 180 kg·hm−2.


2021 ◽  
Author(s):  
Tiankang Wang ◽  
Yixing Li ◽  
Shufeng Song ◽  
Mudan Qiu ◽  
Licheng Zhang ◽  
...  

Abstract Seed setting rate is one of the critical factors that determine rice yield. Grain formation is a complex biological process, whose molecular mechanism is yet to be improved. Here we investigated the function of an OVATE family protein, Embryo Sac Development 1 (ESD1), in the regulation of seed setting rate in rice (Oryza sativa) by examining its loss-of-function mutants generated via clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated9 (Cas9) technology. ESD1 was predominantly expressed at Stage 6 of panicle development, especially in the ovules. esd1 mutants displayed reduced seed setting rates with normal stamen development and pollen tube growth but abnormal pistil group. Investigation of embryo sacs revealed that during the mitosis of functional megaspores, some egg cells degraded during differentiation in esd1 mutants, thereby hindering subsequent fertilization process and reducing seed setting rate. In addition, the transcriptional level of O. sativa anaphase-promoting complex 6, a reported embryo sac developing gene, was significantly reduced in esd1 mutants. These results support that ESD1 is an important modulator of ESD and seed setting rate in rice. Together, this finding demonstrates that ESD1 positively regulates the seed setting rate by controlling ESD in rice and has implications for the improvement of rice yield.


Author(s):  
Hanqing Tang ◽  
Demei Hu ◽  
Chao Zhang ◽  
Juan Yang ◽  
Mengda Xiang ◽  
...  

The differentiation of reproductive characteristics not only exists between different populations, but also may exist within populations. In this work, the differences between the central and peripheral populations were experimentally compared and analyzed in terms of biodiversity index, plant traits, anthesis, pollen germination, floral visitors, seed setting rate, and ploidy. The results showed that the diversity and richness of other plant species, in the central population were significantly lower than those in the peripheral population, but the plant density was much higher than in the peripheral population. The plant anatomical traits, anthesis, pollen germination, floral visitors, seed setting rate, and ploidy were significantly different between central population and peripheral populations. The term increasing rate (IR) is proposed as a means of comparing morphologies in different organs. IR differences in vegetative characteristics were more stable, while those in reproductive characteristics differed significantly. For the central population, the effect of the intraspecific reproductive competition and pollinator selection on plants may significant, and morphology was differentiated in terms of reproductive characteristics. Plants in the peripheral populations were visited by many more pollinators than in the central population, and all pollinators visited infrequently. The reproductive characteristics of plants in the peripheral populations may therefore only be weakly affected by pollinator selection. The reproductive characteristics of plants in the peripheral population may weakly affected by the selection of pollinators and the variation was small. In conclusion, morphological differentiation among the different populations was associated with differences in vegetative and reproductive characteristics.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 422
Author(s):  
Rongrong Chen ◽  
Ziyi Feng ◽  
Xianhua Zhang ◽  
Zhaojian Song ◽  
Detian Cai

Polyploid rice, first discovered by Japanese scientist Eiiti Nakamori in 1933, has a history of nearly 90 years. In the following years, polyploid rice studies have mainly focused on innovations in breeding theory, induction technology and the creation of new germplasm, the analysis of agronomic traits and nutritional components, the study of gametophyte development and reproduction characteristics, DNA methylation modification and gene expression regulation, distant hybridization and utilization among subspecies, species and genomes. In recent years, PMeS lines and neo-tetraploid rice lines with stable high seed setting rate characteristics have been successively selected, breaking through the bottleneck of low seed setting rate of polyploid rice. Following, a series of theoretical and applied studies on high seed setting rate tetraploid rice were carried out. This has pushed research on polyploid rice to a new stage, opening new prospects for polyploid rice breeding.


Sign in / Sign up

Export Citation Format

Share Document