degumming process
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 37)

H-INDEX

15
(FIVE YEARS 2)

Foods ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 124
Author(s):  
Mohammad Saiful Nidzam ◽  
Md. Sohrab Hossain ◽  
Norli Ismail ◽  
Razam Abdul Latip ◽  
Muhammad Khalish Mohammad Ilias ◽  
...  

The presence of glyceryl esters (GE) and 3-monochloropropane-1,2-diol esters (3-MCPDE) in refined, bleached, and deodorized (RBD) palm oil is severely concerning to the palm oil consumer. In the present study, the influence of the phosphoric acid degumming process on the formation of GE and 3-MCDE and in the RBD palm oil was determined with varying the acid dose (0.03–0.06 wt%), temperature (70–100 °C), and reaction time (15–45 min). The experimental conditions of the acid degumming process were designed following the central composite design of experiments, and they were optimized using Response Surface Methodology (RSM) based on the minimal formation of GE and 3-MCDE in the RBD palm oil. The optimal experimental conditions of the acid degumming process were a reaction time of 30 min, phosphoric acid concentration of 0.06 wt%, and temperature of 90 °C. Under these experimental conditions, the minimal GE and 3-MCDE formation in RBD palm oil were determined to be 0.61 mg/kg and 0.59 mg/kg; respectively. Several analytical methods were employed to determine RBD palm oil quality, including color, phosphorus, free fatty acids (FFAs), peroxide values, and fatty acid properties. It was found that the phosphoric acid degumming of CPO effectively removed the phosphorus and hydroperoxide content without conceding the quality of palm oil.


2021 ◽  
pp. 004051752110569
Author(s):  
Małgorzata Zimniewska ◽  
Wanda Różańska ◽  
Anna Kicińska-Jakubowska ◽  
Jerzy Mańkowski ◽  
Marek Wiśniewski ◽  
...  

The study explored the impact of the hydrodynamic degumming process applied for decorticated monomorphic flax on fiber quality. The experiment was designed as the first stage of research leading to the development of a method for decorticated flax fiber elementarization and cottonization; in particular, effectively dividing the fiber bundles to ensure low linear density and reducing impurities in the content, to make the fibers suitable for cotton spinning systems. The degumming process of the decorticated fibers covered hydrodynamic disposal of the gluing substances, mainly pectins from the fibers, with use of a specially designed lab-scale Model Device for Physical Degumming of the Flax Fibers. The degummed fibers were tested for linear density, length, impurity content and chemical composition by thermogravimetric analysis combined with the analysis of evolved gases (Fourier transform infrared spectroscopy) and analysis of images of fiber cross-sections and longitudinal views from a scanning electron microscope. The study outcomes allowed us to determine the optimal parameters of the degumming process applied for decorticated flax fibers, in which the obtained fibers were of the highest quality. It was found that the optimal parameters of the process were a bath temperature of 30°C and a degumming process duration of 24 hours. These lab-scale process conditions were used in further work on the degumming process of flax fiber carried out on a semi-technical scale, followed by a mechanical cottonization of the fiber, at the final stage of the technological chain.


2021 ◽  
Vol 21 (6) ◽  
pp. 1408
Author(s):  
Fahmi Arifan ◽  
Muhammad Kelvin Nandita ◽  
Enrico Fendy Sapatra ◽  
Salsabila Salsabila

Lecithin is an emulsifier that plays an active role in reducing surface tension in making emulsions. The production of lecithin from other vegetable oils allows the use of other types of vegetable oil as a source of lecithin production to replace soy-based oil, which has begun to be used as a bioenergy raw material. This study aims to find an alternative source of new lecithin derived from corn oil by knowing the characteristics of lecithin and applied to mayonnaise. The resulting lecithin was used in mayonnaise with a 2 factorial randomized block design method consisting of 3 levels. Based on the results obtained, the characteristic of corn oil lecithin is that the largest content is hexadecanoic acid which is 44.79%, and the strongest vibration band is CH2 vibration with stretching modes of symmetry and asymmetry at 2922 and 2853 cm–1 and the terminal CH3 group in the 1374 cm–1. L3C3 treatment was the best result with 60% fat content, 4% emulsion stability, 2.12 cP viscosity, and 1.42 × 10–3 N/m surface tension and organoleptic showed a preference value, namely color 4.4 (like), taste 3.2 (sufficient like), smell 4 (like), and texture 3.80 (like it).


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6919
Author(s):  
Anna Baranowska-Korczyc ◽  
Andrzej Hudecki ◽  
Irena Kamińska ◽  
Małgorzata Cieślak

Silk, as a protein fiber characterized by high biocompatibility, biodegradability, and low toxicity, is mainly used as textile structures for various purposes, including for biological applications. The key issue for unlimited silk applicability as a modifier is to prepare its relevant form to cover or introduce to other materials. This study presents silk powder fabrication from Bombyx mori cocoons and non-dyed silk woven fabric through cryogenic milling. The cocoons were milled before and after the degumming process to obtain powders from raw structures and pure fibroin. The powder morphology and composition were analyzed using scanning electron microscopy and energy dispersive spectroscopy. The influence of the milling on the silk structure was studied using infrared and Raman spectroscopies, indicating that silk powders retained dominant β-sheet structure. The powders were also analyzed by differential scanning calorimetry and thermogravimetric techniques. The thermal endothermic peak and onset temperature characteristic for silk decomposition shifted to the lower values for all powders, indicating less thermal stability. However, the process was found to be an efficient way to obtain silk powders. The new milled form of silk can allow its introduction into different matrices or form coatings without using any harsh solvents, enriching them with new features and make more biologically friendly.


2021 ◽  
Vol 15 (3) ◽  
pp. 3
Author(s):  
DEWI NANDYAWATI ◽  
DEA INDRIANI ASTUTI ◽  
NIKNIK NURHAYATI ◽  
ASEP RISWOKO ◽  
IS HELIANTI

Ramie fiber is a potential raw material to substitute imported raw materials such as cotton. Due to its higher hemicellulose content, ramie fiber required hydrolysis in a process called degumming. Enzymatic degumming is environmentally friendly compared to traditional process which using chemicals. Alkalithermophilic xylanase have high ability in hemicellulose hydrolysis. The production of xylanase was conducted by submerged fermentation of Bacillus halodurans CM1 in 20L bioreactor using Mamo and corncob medium with optimum conditions at 50°C, pH 9, 150 RPM and 1 vvm. The optimum specific activity of xylanase measured by Bailey method at 70°C and pH 9 is 475.41 U/mg. Xylanase was stable at 50°C, pH 9 and relatively stable to K+, Na2+, Co2+ and Ca2+ metal ions and Triton-X, Saba dan Tween-80 surfactants. Degumming process was carried out by immersing ramie fibers in formulated degumming solution with vlot 1:20 at 50°C, 150 RPM and 180 minutes. The enzymatic degumming process may substitute or reduce the use of chemicals due to its significant effect on ramie fiber quality. Enzymatic and chemical degumming process reduce the weight of Ramie Fiber to 7.23 %, and 7.72 %, slightly higher than enzymatic degumming 7.15%. Enzymatic degumming maintains tensile strength at 27.51 %. Whiteness index enhanced to 2.99% enzymatically and 3.49% chemically. Keywords: Bacillus halodurans CM1, enzymatic degumming, ramie fiber, textile industry, thermoalkaliphilic xylanase


Data in Brief ◽  
2021 ◽  
Vol 38 ◽  
pp. 107294 ◽  
Author(s):  
Alessio Bucciarelli ◽  
Gabriele Greco ◽  
Ilaria Corridori ◽  
Antonella Motta ◽  
Nicola M. Pugno

2021 ◽  
pp. 004051752110449
Author(s):  
Huihui Wang ◽  
Tong Shu ◽  
Pandeng Li ◽  
Yun Bai ◽  
Mengxiong Xiang ◽  
...  

Ramie fiber is known as the “king of natural fibers,” and the key to its wide application is efficient and green manufacturing. Microbial degumming has gradually become a hot area of research due to its environmental protection and mild operating conditions. However, some gummy materials remain after microbial degumming. Xylan is the main component of residual gums; its acetylated branched chains create the space barrier that makes the removal of hemicellulose difficult during ramie degumming. An acetyl xylan esterase (AXE) was obtained from Bacillus pumilus and characterized to solve this problem. Its optimum temperature and pH were 35°C and 8.0, respectively, and it had good temperature and pH stability. These properties were consistent with the conditions of ramie degumming and they laid a foundation for the application of AXE in ramie degumming. Besides, an engineered strain with a high activity of AXE was constructed successfully on the basis of the wild-type degumming strain Pectobacterium carotovorum HG-49 and used for ramie degumming. The removal rate of hemicellulose and total gums by the engineered strain increased by 4.89% and 2.53%, respectively, compared with that of the wild-type strain. Moreover, the role of this AXE in ramie degumming was further proven by X-ray diffraction and scanning electron microscopy. This study showed that AXE played an important role in the removal of hemicellulose in the degumming process of ramie fibers, thus providing a promising degumming strategy for ramie and other bast fiber plants.


2021 ◽  
Author(s):  
Shuyuan Zhao ◽  
Zhihui Qin ◽  
Ruiyun Zhang ◽  
Naiqiang Li ◽  
Liu Liu ◽  
...  

Abstract Degumming is the vital and critical step in the preparation of hemp fiber for textile application. However, the traditional chemical degumming processes use large amounts of harmful chemicals, especially strong alkalis, which have caused severe challenges to the environment. The reaction conditions of alkaline pectinase and alkaline pectinase were studied in this research, and the alkaline pectinase-xylanase system was successfully applied to the degumming of hemp fibers at mild conditions (T=55 ℃ and pH=8.0) without strong alkali. A comparative analysis of hemp fibers treated under different conditions showed that the gum removal ratio could reach about 50% within 5.5 h of alkaline pectin-xylanase system degumming, making fiber smoother and stronger. After alkaline pectin-xylanase system treatment (0.6 g pectinase, 0.3 g xylanase, 55 ℃, pH 8.0, 5.5 h), the removal ratio of pectin and hemicellulose reached 75 % and 40 %, respectively. And linear density and tenacity of the fiber was 17.4 dtex and 5.62 cN/dtex, respectively. SEM, FT-IR and XRD analysis furthermore demonstrated the excellent effects of the proposed process. The degumming fiber had better water retention performance (513 %) and moisture sorption (8.9 %), which has more excellent application prospects in the textile industry. Moreover, the method abandons the use of acid and alkali and can provide an eco-friendly degumming process for hemp fiber.


2021 ◽  
pp. 004051752110277
Author(s):  
Qilu Cui ◽  
Jiawei Li ◽  
Chongwen Yu

In this paper, the extraction process of flavonoids from hemp fibers was studied. Response surface methodology (RSM) analysis of the extraction parameters indicated that optimized results would be ethanol concentration 76 vol.%, bath ratio 1:50, and reaction time 139 min; therefore, an optimal extraction rate of flavonoids of 0.2275% can be obtained. The chemical structure, surface morphology and element composition of flavonoid extracts were analyzed. The test results indicated that hemp extract contains flavonoids, which can be used to extract flavonoids from hemp fiber, so as to comprehensively develop hemp fiber and reduce the discharge of waste liquid in the traditional degumming process.


2021 ◽  
Author(s):  
Per Nielsen ◽  
Jakob Larsen ◽  
Soeren Engelsen ◽  
Klavs Sorensen

Sign in / Sign up

Export Citation Format

Share Document