radiation field
Recently Published Documents


TOTAL DOCUMENTS

2344
(FIVE YEARS 249)

H-INDEX

67
(FIVE YEARS 6)

Author(s):  
Alexander Lopez ◽  
Solmar Varela ◽  
Ernesto Medina

Abstract The spin activity in macromolecules such as DNA and oligopeptides, in the context of the Chiral Induced Spin Selectivity (CISS) has been proposed to be due to the atomic Spin-Orbit Coupling (SOC) and the associated chiral symmetry of the structures. This coupling, associated with carbon, nitrogen, and oxygen atoms in biological molecules, albeit small (meV), can be enhanced by the geometry, and strong local polarization effects such as hydrogen bonding (HB). A novel way to manipulate the spin degree of freedom is by modifying the spectrum using a coupling to the appropriate electromagnetic radiation field. Here we use the Floquet formalism in order to show how the half-filled band Hamiltonian for DNA, can be modulated by the radiation to produce up to a tenfold increase of the effective SOC once the intrinsic coupling is present. On the other hand, the chiral model, once incorporating the orbital angular momentum of electron motion on the helix, opens a gap for different helicity states (helicity splitting) that chooses spin polarization according to transport direction and chirality, without breaking time-reversal symmetry. The observed effects are feasible in physically reasonable parameter ranges for the radiation field amplitude and frequency.


MAUSAM ◽  
2022 ◽  
Vol 44 (2) ◽  
pp. 175-178
Author(s):  
K. JAYARAMAN ◽  
D.D. CHAKRABORTY ◽  
S.P. BHAGWAT

The terrestrial radiant fluxes are being measured regularly at Pune using a balloon-borne radiometersonde. The net terrestrial radiant fluxes obtained from these measurements over a decade have been studied and results presented. The net terrestrial radiant flux increases with height and reaches a maximum around 12 km and then the rate of increase slows down near tropopause. In the lower stratosphere the fluxes again Increase before reaching a nearly steady value at around 25 km. The clouds and rainfall distributions seriously distort the radiation field.  


2022 ◽  
Vol 2149 (1) ◽  
pp. 012010
Author(s):  
I Santourian ◽  
T Quast ◽  
S Teichert ◽  
K-O Hauer ◽  
A Schirmacher

Abstract An LED sphere radiator (LED-SR) was constructed to improve the accuracy in spectral radiance factor measurements performed with the robot-based gonioreflectometer at PTB. Its properties with respect to the spectral range and coverage, the temporal stability, and the homogeneity of the radiation field are presented. Two types of matte ceramic reflection standards were used for spectral radiance factor validation measurements comparing the standardly used halogen sphere radiator (Halogen-SR) and the LED-SR. Due to its designed spectral range at the border between the visible and the UV-A spectral range, the LED-SR is well suited for many applications in diffuse reflectometry. Its use for absolute radiance factor measurements and investigations of the fluorescence properties of diffuse reflecting samples is shown. Reliable polarization-resolved measurements at wavelengths below 430 nm could be carried out with PTB’s gonioreflectometer for the first time due to the beneficial signal-to-noise ratio of the LED-SR.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Yilber Fabian Bautista ◽  
Nils Siemonsen

Abstract We derive the classical gravitational radiation from an aligned spin binary black hole on closed orbits, using a dictionary built from the 5-point QFT scattering amplitude of two massive particles exchanging and emitting a graviton. We show explicitly the agreement of the transverse-traceless components of the radiative linear metric perturbations — and the corresponding gravitational wave energy flux — at future null infinity, derived from the scattering amplitude and those derived utilizing an effective worldline action in conjunction with multipolar post-Minkowskian matching. At the tree-level, this result holds at leading orders in the black holes’ velocities and up to quadratic order in their spins. At sub-leading order in black holes’ velocities, we demonstrate a matching of the radiation field for quasi-circular orbits in the no-spin limit. At the level of the radiation field, and to leading order in the velocities, there exists a one-to-one correspondence between the binary black hole mass and current quadrupole moments, and the scalar and linear-in-spin scattering amplitudes, respectively. Therefore, we show explicitly that waveforms, needed to detect gravitational waves from inspiraling binary black holes, can be derived consistently, to the orders considered, from the classical limit of quantum scattering amplitudes.


Author(s):  
Snider W Clint ◽  
Uman Martin A ◽  
Moore Robert C

2021 ◽  
pp. 126-133
Author(s):  
P. Zaichko ◽  
A. Kuznetsova ◽  
A. Tsudik ◽  
V. Mansarliysky

We present the results of relativistic calculation of the radiative transition probabilities and excited states lifetimes for a heavy Rydberg atomic systems in a black-body (thermal) radiation field on example of the rubidium. As theoretical approach we apply the combined generalized relativistic energy approach and relativistic many-body perturbation theory with ab initio Dirac zeroth  approximation. There are obtained the calculational data for the radiative transition probabilities and excited states lifetimes, in particular, the rubidium atom in the Rydberg states with principal quantum number n=10-100. It is carried out the comparison of obtained theoretical data on the effective lifetime for the group of Rydberg  nS states of the rubidium atom at a temperature of T = 300K with experimental data as well as data of alternative theoretical calculation based on the improved quasiclassical model.  It is shown that the  accuracy of the theoretical data on the radiative transition probabilities and excited states lifetimes is provided by a correctness of the corresponding relativistic wave functions and accounting for the exchange-correlation effects.


Author(s):  
Валерий Иванович Иванов ◽  
Сергей Анатольевич Пячин

На основе стационарного решения уравнения диффузии изучена сепарация наночастиц в прозрачной полидисперсной водной суспензии с различными типами распределений по размерам под действием силы светового давления, возникающей в поле лазерного излучения интенсивностью 0,5 - 500 кВт/см. Установлено, что на дно кюветы преимущественно будут осаждаться частицы радиусом более 100 нм, а концентрация более мелких наночастиц во всем объеме суспензии останется без изменений. В случае симметричного начальное распределения наночастиц по размерам воздействие интенсивного светового пучка на суспензию приводит к нарушению симметрии кривой функции распределения, а также смещению максимума в область меньших размеров частиц на облучаемой поверхности. Если начальное распределение по размерам имеет несимметричный характер, исходное одномодовое распределение частиц по размерам трансформируется в двумодовое. Данная методика может быть использована для выделения наночастиц определенных размеров в зависимости от плотности мощности излучения. On the basis of a stationary solution of a diffusion equation separation of nanoparticles in a transparent polydisperse aqueous suspension with different types of size distributions was studied under the action of the light pressure arising in the laser radiation field with the intensity of 0,5 - 500 kW/cm. It was found that particles with a radius of more than 100 nm will mainly be precipitated at the bottom of the cell, and the concentration of smaller nanoparticles in the entire volume of the suspension will remain unchanged. In the case of a symmetrical initial distribution of nanoparticles size, the effect of a light beam with high intensity on the suspension leads to a violation of the symmetry of the distribution function curve, as well as a shift of the maximum to the region of smaller particle sizes on the irradiated surface. If the initial size distribution is asymmetric, the initial single-mode particle size distribution is transformed into a two-mode one. This technique can be used to isolate nanoparticles of certain sizes depending on the power density of the radiation.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1642
Author(s):  
Vernon Cooray ◽  
Gerald Cooray ◽  
Marcos Rubinstein ◽  
Farhad Rachidi

In positive lightning return strokes, the net momentum transported by the radiation field has the same direction as the momentum associated with electrons, whereas the momentum associated with electrons is in opposite direction to the momentum of radiation in negative return strokes. It is shown here that this polarity asymmetry could limit the maximum speed of positive return strokes with respect to the negative return strokes.


2021 ◽  
Vol 11 (12) ◽  
pp. 2891-2896
Author(s):  
R. Rajkumar ◽  
P. Marichamy

The concept of wireless implantable medical devices (IMDs) is becoming more popular as the world’s population ages and concerns about public health grow. Implantable antennas have figured prominently in wireless communication among IMDs and external infrastructures, yet they have subsequently become a major study area. Among the most difficult aspects of building implantable antennas is to varied physical tissues and fluids act as dielectric stress on antenna, affecting its efficiency dramatically. Ground radiation antenna was particularly designed for the antenna size reduction. The features of the ground have an impact on it. There is variance in the radiation field with similar frequency and antenna length yet varied ground conductance. It has been discovered that when the ground conductance is low, the radiation field is minimal and the orientation of the radiation field modifies. A meandered-loop ground radiation antenna (MGRA) was designed by coupling the meandered-loop structure to the ground radiating plane using only one electrical element. The proposed antenna was studied for biomedical applications at ISM band in the range between 2.4 to 2.8 GHz. The overall size of antenna is 30×24 mm2 making it suitable for the implantable applications. The bandwidth of the MGRA was further improved by using stub structures. The single layer skin model simulation showed that |S11| parameter as −21.21 dB at the resounding frequency of 2.40 GHz. Major factors like impedance match gain, radiation effectiveness and Specific Absorption Rate (SAR) had also been evaluated in this study.


Sign in / Sign up

Export Citation Format

Share Document