air quality measurements
Recently Published Documents


TOTAL DOCUMENTS

183
(FIVE YEARS 67)

H-INDEX

18
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Horim Kim ◽  
Michael Müller ◽  
Stephan Henne ◽  
Christoph Hüglin

Abstract. Low-cost sensors are considered as exhibiting great potential to complement classical air quality measurements in existing monitoring networks. However, the use of low-cost sensors poses some challenges. In this study, the behavior and performance of electrochemical sensors for NO and NO2 were determined over a longer operating period in a real-world deployment. After careful calibration of the sensors, based on co-location with reference instruments at a rural traffic site during six months and by using robust linear regression and random forest regression, the coefficient of determination of both types of sensors were high (R2 > 0.9) and the root mean square error (RMSE) of NO and NO2 sensors were about 6.8 ppb and 3.5 ppb, respectively, for 10-minute mean concentrations. The RMSE of the NO2 sensors, however, more than doubled, when the sensors were deployed without re-calibration for a one-year period at other site types (including urban background locations), where the range and the variability of air pollutant concentrations differed from the calibration site. This indicates a significant effect of the re-location of the sensors on the quality of their data. During deployment, we found that the NO2 sensors are capable of distinguishing general pollution levels, but they proved unsuitable for accurate measurements, mainly due to significant biases. In order to investigate the long-term stability of the original calibration, the sensors were re-installed at the calibration site after deployment. Surprisingly, the coefficient of determination and the RMSE of the NO sensor remained almost unchanged after more than one year of operation. In contrast, the performance of the NO2 sensors clearly deteriorated as indicated by a higher RMSE (about 7.5 ppb, 10-minute mean concentrations) and a lower coefficient of determination (R2 = 0.59).


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 83
Author(s):  
Wisam Mohammed ◽  
Nicole Shantz ◽  
Lucas Neil ◽  
Tom Townend ◽  
Adrian Adamescu ◽  
...  

The Region of Waterloo is the third fastest growing region in Southern Ontario in Canada with a population of 619,000 as of 2019. However, only one air quality monitoring station, located in a city park in Kitchener, Ontario, is currently being used to assess the air quality of the region. In September 2020, a network of AQMesh Multisensor Mini Monitoring Stations (pods) were installed near elementary schools in Kitchener located near different types of emission source. Data analysis using a custom-made long-distance scaling software showed that the levels of nitrogen oxides (NO and NO2), ground level ozone (O3), and fine particulate matter (PM2.5) were traffic related. These pollutants were used to calculate the Air Quality Health Index-Plus (AQHI+) at each location, highlighting the inability of the provincial air quality monitoring station to detect hotspot areas in the city. The case study presented here quantified the impact of the 2021 summer wildfires on the local air quality at a high time resolution (15-min). The findings in this article show that these multisensor pods are a viable alternative to expensive research-grade equipment. The results highlight the need for networks of local scale air quality measurements, particularly in fast-growing cities in Canada.


Author(s):  
Shakhaoat Hossain ◽  
Wenwei Che ◽  
Alexis Kai-Hon Lau

Exposure surrogates, such as air quality measured at a fixed-site monitor (FSM) or residence, are typically used for health estimates. However, people spend various amounts of time in different microenvironments, including the home, office, outdoors and in transit, where they are exposed to different magnitudes of particle and gaseous air pollutants. Health risks caused by air pollution exposure differ among individuals due to differences in activity, microenvironmental concentration, as well as the toxicity of pollutants. We evaluated individual and combined added health risks (AR) of exposure to PM2.5, NO2, and O3 for 21 participants in their daily life based on real-world personal exposure measurements. Exposure errors from using surrogates were quantified. Inter- and intra-individual variability in health risks and key contributors in variations were investigated using linear mixed-effects models and correlation analysis, respectively. Substantial errors were found between personal exposure concentrations and ambient concentrations when using air quality measurements at either FSM or the residence location. The mean exposure errors based on the measurements taken at either the FSM or residence as exposure surrogates was higher for NO2 than PM2.5, because of the larger spatial variability in NO2 concentrations in urban areas. The daily time-integrated AR for the combined PM2.5, NO2, and O3 (TIARcombine) ranged by a factor of 2.5 among participants and by a factor up to 2.5 for a given person across measured days. Inter- and intra-individual variability in TIARcombine is almost equally important. Several factors were identified to be significantly correlated with daily TIARcombine, with the top five factors, including PM2.5, NO2 and O3 concentrations at ‘home indoor’, O3 concentrations at ‘office indoor’ and ambient PM2.5 concentrations. The results on the contributors of variability in the daily TIARcombine could help in targeting interventions to reduce daily health damage related to air pollutants.


2021 ◽  
Vol 3 (4) ◽  
pp. 260-271
Author(s):  
S. Kavitha ◽  
J. Manikandan

The climate change may be mitigated, and intra air quality assessment and local human well-being can benefit from a decrease in emission of pollutant content in the air. Monitoring the quality of the air around us is one way to do this. However, a location with various emission sources and short-term fluctuations in emissions in both time and space, and changes in winds, temperature, and precipitation creates a complex and variable pollution concentration field in the atmosphere. Therefore, based on the time and location where the sample is obtained, the measurement conducted are reflected in the monitoring results. This study aims to investigate one of India's most polluted cities' air quality measurements by greenhouse gas emissions. Using the Mann-Kendall and Sen's slope estimators, the research piece gives a statistical trend analysis of several air contaminants based on previous pollution data from Mumbai, India's air quality index station. In addition, future levels of air pollution may be correctly forecasted using an autoregressive integrated moving average model. This is followed by comparing different air quality standards and forecasts for future air pollution levels.


2021 ◽  
Author(s):  
Victor Trees ◽  
Ping Wang ◽  
Piet Stammes ◽  
Lieuwe G. Tilstra ◽  
David P. Donovan ◽  
...  

Abstract. Cloud shadows are observed by the TROPOMI satellite instrument as a result of its high spatial resolution as compared to its predecessor instruments. These shadows contaminate TROPOMI's air quality measurements, because shadows are generally not taken into account in the models that are used for aerosol and trace gas retrievals. If the shadows are to be removed from the data, or if shadows are to be studied, an automatic detection of the shadow pixels is needed. We present the Detection AlgoRithm for CLOud Shadows (DARCLOS) for TROPOMI, which is the first cloud shadow detection algorithm for a spaceborne spectrometer. DARCLOS raises potential cloud shadow flags (PCSFs), and actual cloud shadow flags (ACSFs). The PCSFs indicate the TROPOMI ground pixels that are potentially affected by cloud shadows based on a geometric consideration with safety margins. The ACSFs are a refinement of the PCSFs using spectral reflectance information of the PCSF pixels, and identify the TROPOMI ground pixels that are confidently affected by cloud shadows. We validate DARCLOS with true color images made by the VIIRS instrument on board of Suomi NPP orbiting in close constellation with TROPOMI on board of Sentinel 5-P. We conclude that the PCSF can be used to exclude cloud shadow contamination from TROPOMI data, while the ACSF can be used to select pixels for the scientific analysis of cloud shadow effects.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ågot K. Watne ◽  
Jenny Linden ◽  
Jens Willhelmsson ◽  
Håkan Fridén ◽  
Malin Gustafsson ◽  
...  

Using low-cost air quality sensors (LCS) in citizen science projects opens many possibilities. LCS can provide an opportunity for the citizens to collect and contribute with their own air quality data. However, low data quality is often an issue when using LCS and with it a risk of unrealistic expectations of a higher degree of empowerment than what is possible. If the data quality and intended use of the data is not harmonized, conclusions may be drawn on the wrong basis and data can be rendered unusable. Ensuring high data quality is demanding in terms of labor and resources. The expertise, sensor performance assessment, post-processing, as well as the general workload required will depend strongly on the purpose and intended use of the air quality data. It is therefore a balancing act to ensure that the data quality is high enough for the specific purpose, while minimizing the validation effort. The aim of this perspective paper is to increase awareness of data quality issues and provide strategies to minimizing labor intensity and expenses while maintaining adequate QA/QC for robust applications of LCS in citizen science projects. We believe that air quality measurements performed by citizens can be better utilized with increased awareness about data quality and measurement requirements, in combination with improved metadata collection. Well-documented metadata can not only increase the value and usefulness for the actors collecting the data, but it also the foundation for assessment of potential integration of the data collected by citizens in a broader perspective.


2021 ◽  
Vol 18 (04) ◽  
Author(s):  
Ryan Chaban ◽  
Daniel Dudt ◽  
Bethany Gordon ◽  
Evan Ostrowski

Air pollutants are known to cause serious health impacts, and historically marginalized groups are disproportionately exposed to these risks. Other hazardous pollutants often accompany carbon dioxide emissions during fossil fuel combustion, and therefore reductions in greenhouse gas emissions from climate policy can also improve air quality. However, although these policies may reduce pollution overall, existing programs have often increased local emissions levels – particularly in the most overburdened neighborhoods. The adverse health effects caused by a redistribution of emissions must be considered as Pennsylvania plans to join the Regional Greenhouse Gas Initiative. We recommend the Department of Environmental Protection include an annual impact assessment of their cap-and-trade program on vulnerable communities using both the available carbon dioxide emissions data and additional local air quality measurements.


2021 ◽  
Author(s):  
Birgitta Komppula ◽  
◽  
Tomi Karppinen ◽  
Henrik Virta ◽  
Anu-Maija Sundström ◽  
...  

In this report the current air quality in Finland has been assessed with air quality measurement data and satellite observations. The assessment of ambient air concentrations included following air impurities: NO2, NOx, PM10, PM2,5, SO2, CO, O3, benzo(a)pyrene, benzene, Pb, As, Cd ja Ni. For these pollutants air quality assessment thresholds are given in air quality legislation (2008/50/EY, 2004/107/EY). Assessment has been performed for air quality zones. The main data set included air quality measurements performed in Finland during 2015–2019. Satellite observations were used as an objective assessment tool in analysis of the spatial variation of NO2 and CO concentrations. Air quality measurements show that air quality has improved in Finland in many respects. Especially the need to monitor NO2 and PM10 with continuous measurements has decreased. Growing understanding of national benzo(a)pyrene concentrations has increased the monitoring needs. Efforts to decrease ozone levels still requires international actions. SO2, CO, benzene and heavy metal concentrations are on a low level in Finland outside industrial areas and other assessment methods than continuous monitoring can be used, and the number of continuous monitoring sites has already decreased. Satellite-based concentrations of nitrogen dioxide and carbon monoxide as well as their spatial variation in Finland were analyzed using observations from the TROPOsperic Monitoring Instrument (TROPOMI). The analysis of CO over Finland was carried out for the first time in this project. Results show that overall annual CO concentrations over Finland are low and spatial variability is small. Also, NO2 concentrations over Finland are rather low, but spatial patterns are more clearly visible. The highest NO2 concentrations are observed over the largest cities. By establishing a relationship between ground-based and satellite total column concentrations, surface concentrations of NO2 and CO were estimated from the satellite data for the zones. The satellite-based estimate for annual NO2 surface concentration over Helsinki metropolitan area is 28 μg/m3, and for the rest of Finland mostly between 10–15 μg/m3. For CO the differences between monitoring areas are small, with estimates varying between 160–164 μg/m3 or in other words about 0,16 mg/m3.


2021 ◽  
Vol 13 (16) ◽  
pp. 3137
Author(s):  
Chao Tong ◽  
Chengxin Zhang ◽  
Cheng Liu

The development of the green economy is universally recognized as a solution to natural resource shortages and environmental pollution. When exploring and developing a green economy, it is important to study the relationships between the environment and economic development. As opposed to descriptive and qualitative research without modeling or based on environmental Kuznets curves, quantitative relationships between environmental protection and economic development must be identified for exploration and practice. In this paper, we used the generalized additive model (GAM) regression method to identify relationships between atmospheric pollutants (e.g., NO2, SO2 and CO) from remote sensing and in situ measurements and their driving effectors, including meteorology and economic indicators. Three representative cities in the Anhui province, such as Hefei (technology-based industry), Tongling (resource-based industry) and Huangshan (tourism-based industry), were studied from 2016 to 2020. After eliminating the influence of meteorological factors, the relationship between air quality indexes and industrial production in the target cities was clearly observed. Taking Hefei, for example, when the normalized output of chemical products increases by one unit, the effect on atmospheric NO2 content increases by about 20%. When the normalized output of chemical product increases by one unit, the effect on atmospheric SO2 content increases by about 10%. When chemical and steel product outputs increase by one unit, the effect on atmospheric CO content increases by 25% and 20%, respectively. These results can help different cities predict local economic development trends varying by the changes in air quality and adjust local industrial structure.


2021 ◽  
Vol 118 (27) ◽  
pp. e2025540118
Author(s):  
Ben Crawford ◽  
David H. Hagan ◽  
Ilene Grossman ◽  
Elizabeth Cole ◽  
Lacey Holland ◽  
...  

Extreme air quality episodes represent a major threat to human health worldwide but are highly dynamic and exceedingly challenging to monitor. The 2018 Kīlauea Lower East Rift Zone eruption (May to August 2018) blanketed much of Hawai‘i Island in “vog” (volcanic smog), a mixture of primary volcanic sulfur dioxide (SO2) gas and secondary particulate matter (PM). This episode was captured by several monitoring platforms, including a low-cost sensor (LCS) network consisting of 30 nodes designed and deployed specifically to monitor PM and SO2 during the event. Downwind of the eruption, network stations measured peak hourly PM2.5 and SO2 concentrations that exceeded 75 μg m−3 and 1,200 parts per billion (ppb), respectively. The LCS network’s high spatial density enabled highly granular estimates of human exposure to both pollutants during the eruption, which was not possible using preexisting air quality measurements. Because of overlaps in population distribution and plume dynamics, a much larger proportion of the island’s population was exposed to elevated levels of fine PM than to SO2. Additionally, the spatially distributed network was able to resolve the volcanic plume’s chemical evolution downwind of the eruption. Measurements find a mean SO2 conversion time of ∼36 h, demonstrating the ability of distributed LCS networks to observe reaction kinetics and quantify chemical transformations of air pollutants in a real-world setting. This work also highlights the utility of LCS networks for emergency response during extreme episodes to complement existing air quality monitoring approaches.


Sign in / Sign up

Export Citation Format

Share Document