occupant comfort
Recently Published Documents


TOTAL DOCUMENTS

192
(FIVE YEARS 90)

H-INDEX

19
(FIVE YEARS 7)

Buildings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 58
Author(s):  
Sung-Kyung Kim ◽  
Ji-Hye Ryu ◽  
Hyun-Cheol Seo ◽  
Won-Hwa Hong

The thermal comfort of occupants in the increasing number of modern buildings with glass curtain wall structures is of significant research interest. As the thermal sensitivity of building occupants varies with building features, situational factors, and the human body’s thermal balance, it is necessary to derive the comfort temperature based on field research, which was conducted in this study in a South Korean office building with a glass curtain wall structure. The influence of solar radiation on the indoor thermal environment and thermal comfort obtained by measurements and occupant questionnaires was analyzed using cumulative graphs and a sensitivity analysis. The observed changes in operative temperature over time confirmed that occupant comfort was significantly affected by the radiant temperature. Based on this result, two groups (Group A near the windows and Group B near the interior corridor) were defined for analysis. Owing to the influx of solar radiation, Group A was more sensitive to changes in the thermal environment (0.67/°C) than Group B (0.49/°C), and the derived comfort temperature for each group differed from the set temperature by approximately ±2 °C. Thus, it was confirmed that the solar radiation introduced through a glass curtain wall building has a direct impact on the indoor thermal environment and occupant comfort according to location.


2021 ◽  
Vol 13 (24) ◽  
pp. 13863
Author(s):  
Yana Akhtyrska ◽  
Franz Fuerst

This study examines the impact of energy management and productivity-enhancing measures, implemented as part of LEED Existing Buildings Operations and Management (EBOM) certification, on source energy use intensity and rental premiums of office spaces using data on four major US markets. Energy management practices, comprised of commissioning and advanced metering, may reduce energy usage. Conversely, improving air quality and occupant comfort in an effort to increase worker productivity may in turn lead to higher overall energy consumption. The willingness to pay for these features in rental office buildings is hypothesised to depend not only on the extent to which productivity gains enhance the profits of a commercial tenant but also on the lease arrangements for passing any energy savings to the tenant. We apply a difference-in-differences method at a LEED EBOM certification group level and a multi-level modelling approach with a panel data structure. The results indicate that energy management and indoor environment practices have the expected effect on energy consumption as described above. However, the magnitude of the achieved rental premiums appears to be independent of the lease type.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sidney Newton ◽  
Arezoo Shirazi ◽  
Pernille Christensen

PurposeTo achieve the building and property by 2050, decarbonisation goals will now require a significant increase in the rate of improvement in the energy performance of buildings. Occupant behaviour is crucial. This study seeks to guide the application of smart building technology in existing building stock to support improved building energy performance and occupant comfort.Design/methodology/approachThis study follows a logical partitioning approach to the development of a schema for building energy performance and occupant comfort. A review of the literature is presented to identify the characteristics that label and structure the problem elements. A smart building technology framework is overlaid on the schema. The framework is then applied to configure and demonstrate an actual technology implementation for existing building stock.FindingsThe developed schema represents the key components and relationships of building energy performance when combined with occupant comfort. This schema provides a basis for the definition of a smart building technologies framework for existing building stock. The study demonstrates a viable configuration of available smart building technologies that couple building energy performance with occupant comfort in the existing building stock. Technical limitations (such as relatively simple building management control regimes) and pragmatic limitations (such as change management issues) are noted for consideration.Originality/valueThis is the first development of a schema to represent how building energy performance can be coupled with occupant comfort in existing building stock using smart building technologies. The demonstration study applies one of many possible technology configurations currently available, and promotes the use of open source applications with push-pull functionality. The schema provides a common basis and guide for future studies.


Buildings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 558
Author(s):  
Ikechukwu Ogwu ◽  
Zhilin Long ◽  
Deuckhang Lee ◽  
Xuhui Zhang ◽  
Wei Zhang ◽  
...  

The fundamental notion of ‘smart’ in building materials discourse is responsiveness—the ability of materials to react to environmental stimuli by manifesting a noticeable physical change when there is a difference in the conditions of their immediate surroundings. This notion, however, is also interchanged with ‘intelligence’, which involves an array of control protocols. Notwithstanding, both notions are used synonymously and as occupant comfort and energy efficiency strategies in buildings. The current study aimed to underscore the fundamental issues in the conceptualization of both notions in building materials colloquy by systematic review of published literature following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 checklist. The review revealed that while smart responses are direct, predictable and reversible, requiring no external control system, computer systems and networks which require a constant supply of energy are essential for intelligence. In fact, the relationship between intelligent systems, energy efficiency and occupant comfort depends on external computer control and machine components of learning, resulting in complex systems with longer payback times, whereas smart materials and systems respond directly and immediately without additional energy or occupant control. The discussions present an attempt towards promoting zero additional energy demand for buildings using smart materials.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Amit Kaushik ◽  
Mohammed Arif ◽  
Obas John Ebohon ◽  
Hord Arsalan ◽  
Muhammad Qasim Rana ◽  
...  

Purpose The Purpose of this paper is to identify statistical relationships between visual environment and occupant productivity. Visual environment is one of the most important indoor environmental quality (IEQ) parameters, and it directly impacts occupant productivity in offices. The literature outlines the significance of the impact. Still, there is a lack of investigation, statistical analysis and inter-relationships between the independent variables (IEQ factors), especially in the hot and arid climate. Design/methodology/approach This study presents a research study investigating the effects and shows statistical relationships between IEQ on occupant comfort and productivity. The study was conducted in the Middle East, and data was collected for 12 months. It used the response surface analysis to perform analysis. Findings This study outlined seven unique relationships highlighting the recommended range, inter-dependencies. Results include that illumination has maximum effect on visual comfort and temperature, daylight having direct influence and relative humidity, wall type next to the seat and kind of workspace also impact visual comfort and productivity. These findings would help to improve occupant comfort and productivity in office buildings. It is recommended to include results and recommendations on design guidelines for office buildings. Originality/value This study presents the unique effects of non-visual IEQ parameters on visual comfort and productivity. This investigation also provides a unique method to develop the statistical relationship between various indoor environmental factors and productivity in different contexts and buildings.


2021 ◽  
Author(s):  
◽  
Tomas Sandoval-Calderon

<p>Incorporating different technologies and lighting techniques in the illumination of structures has allowed us to portray fantastic night time vistas of our cities. However, the success of the selected technique or technology is frequently assessed based on what the lighting does to the overall environment. At present, it is a common practice for the client or architect to require an illuminated night view of the building. These views are often used as part of the marketing strategy to promote building facilities. Alternatively, on a large scale, they can help promote buildings as city icons.  The illumination of building facades requires an appropriate selection of one or more floodlighting techniques and light sources to achieve the desired lighting effect. This selection, often driven by lighting standards and design considerations, will heavily influence the way in which that the overall lit environment will be portrayed at the end of the lighting project. Currently, tables and floodlighting techniques exist to select the recommended quantity of light and the most suitable luminaire arrangement to illuminate a façade. There is however, no direct indication of how the surrounding area will be affected when the recommended light levels are achieved on the façade.  Despite the increased importance of the floodlighting technique, the design of a good illuminated façade does not have a tradition on which to base parameters for the lighting design. This is often individually approached based on the knowledge, understanding, experience and proficiency of the lighting designer. Considering the diversity of buildings in urban environments, the selection of uncoordinated design parameters could have a significant impact on the area where the building is located. This could affect the occupant comfort and good energy management.  In light of the considerations presented above, it is only with a methodological approach that the lighting designer will be able to provide predictable and consistent results in any number of different situations. This presents an opportunity to develop a methodology to identify whether a façade is over-lit or if the proposed lighting solution is adequate for the area where it is situated.  The proposed methodology will provide a tool to estimate the potential lighting results while considering the effect on the overall environment where the building is located. When a façade is illuminated, the degree of the light experienced at street level is very much dependent upon the reflected light from the primary lit surface. This allows for a relationship based on light levels received at the surrounding street and the average illuminance level achieved on the façade.  Considering that lighting parameters such as lamp lumen output, the reflective qualities of the surface and the luminaire position are intrinsically connected to light reflections, a mathematical expression is formulated to link the relationship mentioned above with lighting design parameters through a set of nomographs. This method provides a good foundation to systematically approach lighting designs with a comprehensive procedure to link the practical lighting considerations with the lighting requirements that will provide occupant comfort and good energy management. This method will help designers to compare different lighting alternatives by analysing the lighting impact of different lit facade options at the very early stage of the lighting design process.</p>


2021 ◽  
Author(s):  
◽  
Tomas Sandoval-Calderon

<p>Incorporating different technologies and lighting techniques in the illumination of structures has allowed us to portray fantastic night time vistas of our cities. However, the success of the selected technique or technology is frequently assessed based on what the lighting does to the overall environment. At present, it is a common practice for the client or architect to require an illuminated night view of the building. These views are often used as part of the marketing strategy to promote building facilities. Alternatively, on a large scale, they can help promote buildings as city icons.  The illumination of building facades requires an appropriate selection of one or more floodlighting techniques and light sources to achieve the desired lighting effect. This selection, often driven by lighting standards and design considerations, will heavily influence the way in which that the overall lit environment will be portrayed at the end of the lighting project. Currently, tables and floodlighting techniques exist to select the recommended quantity of light and the most suitable luminaire arrangement to illuminate a façade. There is however, no direct indication of how the surrounding area will be affected when the recommended light levels are achieved on the façade.  Despite the increased importance of the floodlighting technique, the design of a good illuminated façade does not have a tradition on which to base parameters for the lighting design. This is often individually approached based on the knowledge, understanding, experience and proficiency of the lighting designer. Considering the diversity of buildings in urban environments, the selection of uncoordinated design parameters could have a significant impact on the area where the building is located. This could affect the occupant comfort and good energy management.  In light of the considerations presented above, it is only with a methodological approach that the lighting designer will be able to provide predictable and consistent results in any number of different situations. This presents an opportunity to develop a methodology to identify whether a façade is over-lit or if the proposed lighting solution is adequate for the area where it is situated.  The proposed methodology will provide a tool to estimate the potential lighting results while considering the effect on the overall environment where the building is located. When a façade is illuminated, the degree of the light experienced at street level is very much dependent upon the reflected light from the primary lit surface. This allows for a relationship based on light levels received at the surrounding street and the average illuminance level achieved on the façade.  Considering that lighting parameters such as lamp lumen output, the reflective qualities of the surface and the luminaire position are intrinsically connected to light reflections, a mathematical expression is formulated to link the relationship mentioned above with lighting design parameters through a set of nomographs. This method provides a good foundation to systematically approach lighting designs with a comprehensive procedure to link the practical lighting considerations with the lighting requirements that will provide occupant comfort and good energy management. This method will help designers to compare different lighting alternatives by analysing the lighting impact of different lit facade options at the very early stage of the lighting design process.</p>


2021 ◽  
Vol 2042 (1) ◽  
pp. 012130
Author(s):  
Narges Torabi ◽  
H. Burak Gunay ◽  
William O’Brien

Abstract Faults in air-based heating, ventilation, and air conditioning (HVAC) systems lead to energy waste and discomfort. While the emphasis of fault detection and diagnostic (FDD) research has been on hard faults in actuators, sensors, and equipment, faults arising from human errors account for a significant portion of faults occurring in HVAC systems. In this paper, human errors occurring in air handling units (AHUs) and variable air volume (VAV) thermal zones during design, construction, and operation phases are identified through a review of the literature. Then, the faults are divided into six main categories. Based on case studies investigating these faults, the impact of each fault category on occupant comfort, energy consumption, and equipment life is discussed. The authors provide recommendations to minimize human errors in AHUs and VAV zones throughout the building life cycle.


Sign in / Sign up

Export Citation Format

Share Document