concrete mixture
Recently Published Documents


TOTAL DOCUMENTS

548
(FIVE YEARS 263)

H-INDEX

23
(FIVE YEARS 5)

2022 ◽  
Vol 5 (1) ◽  
pp. 77-82
Author(s):  
Yosi Haristha ◽  
Elfania Bastian

Concrete is the majority of materials used in construction in Indonesia in general. Concrete mix innovations are needed so that concrete has better quality and quality. Innovation in concrete mixture one of them by using organic waste. In addition to improving quality, organic waste used is expected to reduce global warming. In Nagari IV Koto Palembayan ijuk from enau trees is not processed and left alone, so over time the ijuk can become waste. In this study discussed the effect of the addition of ijuk in the concrete mixture against the strong press of concrete. The targeted concrete press strong value is 14.5 MPa. The test object is made by varying the amount of ijuk addition in the concrete mixture by 0.25% and 0.5%. The test object used is a cylinder measuring 15cm in diameter and 30 cm high. Testing was conducted when the concrete was 7 days old, 14 days and 28 days old using 2 samples of test objects. The results showed a strong value of normal concrete press age of 28 days obtained at 15.57, while the strong value of additional concrete press ijuk 0.25% and 0.5% obtained by 19.82 MPa and 18.26 MPa. The results showed additional concrete ijuk 0.25% increased by 27.30% from the normal concrete press strength and the strong value of additional concrete press ijuk 0.5% also increased by 17.28% from the strong normal concrete press.


Author(s):  
V. P. Gonciaruc ◽  
O. A. Bolotin ◽  
M. K. Bologa ◽  
E. G. Vrabie ◽  
A. A. Policarpov
Keyword(s):  

2022 ◽  
Vol 955 (1) ◽  
pp. 012002
Author(s):  
I Sudarsono ◽  
S I Wahyudi ◽  
H P Adi ◽  
M D Ikval

Abstract Concrete is a material component in coastal area construction. With the increasing demand for concrete for construction purposes, there have been various innovations in concrete mixtures to improve the quality of the concrete, including the compressive strength value of concrete. In the concrete mixture, the researchers also add additive to the concrete mixture, one alternative is natural zeolite which is widely found in the earth. Research by testing concrete samples with variations of the zeolite mixture 0%, 15%, and 25% uses cement type V. The test results are then compared with the results of other studies using different types of cement. Comparative studies of zeolite concrete test with different types of cement show that the optimum proportion of zeolite is around 10% to 20% of the weight of cement to get the best compressive strength value.


2022 ◽  
Vol 2160 (1) ◽  
pp. 012020
Author(s):  
Xudong Wu ◽  
Yingjun Peng ◽  
Tao He ◽  
Putao Song

Abstract The effects of shrinkage reducing agent and expansion agent on workability, strength and shrinkage of C50 self-compacting concrete with steel-shell immersed tube were studied. It is found that the expansive agent can increase the 28d compressive strength of concrete and restrain the shrinkage of concrete, but it can reduce the mixture property of concrete, and the shrinkage reducing agent can reduce the 28d compressive strength of concrete, but it can obviously restrain the shrinkage of concrete and improve the performance of concrete mixture. On the basis that the performance of concrete mixture meets the technical index, when the dosage of shrinkage reducing agent is 1.5%, the performance of concrete mixture is the best, and the drying shrinkage rate of 28d is the smallest. At this time, the properties of C50 steel-shell sunk pipe self-compacting concrete are as follows: slump flow 720mm, T50 2s, pour-down time 2s, v-shaped funnel passing time 6s, 28d compressive strength 59.6 MPa, 28d drying shrinkage 135×10−6.


Author(s):  
V. Martynov ◽  
◽  
O. Martynova ◽  
V. Elkin ◽  
S. Makarova ◽  
...  

Abstract. The results of experimental studies are presented, the purpose of which was to study the influence of variable formulation and technological factors on the rheological characteristics of the foam concrete mixture, in particular, the structural strength. This is preceded by an analysis of the process of structure formation of cellular concrete. As a result, it is shown that the properties of cellular concrete are determined by the nature of the distribution of the solid component. The structure of the solid phase is formed at the earliest stages of the formation of cellular products and depends on the rheological characteristics of the mortar and cellular mixture. In the technology of cellular concrete, it is important to synchronize the processes of pore formation and the growth of plastic (structural) strength, which is also associated with a change in the rheological properties of the mixture. Using the methods of mathematical statistics, the influence of the content of the filler in the mixture with cement, the content of the complex additive, and the effect of mechanical chemical activation on the kinetics of the plastic strength of the foam concrete mixture were studied. The kinetic dependences of the plastic strength of the foam concrete mixture in the range of 6 ... 24 hours from the moment of manufacture have been constructed. Each of the 15 curves is maximized by a 3rd-degree polynomial. Based on the obtained dependences, they are differentiated between the first and second derivatives. As a result, the equations of the speed and intensity (acceleration) of the plastic strength of the foam concrete mixture were obtained. According to the results of the previous experiment, carried out according to a three-factor plan, a 4-factor plan was synthesized, in which the aging period of the foam concrete mixture was taken as the fourth factor. The calculated theoretical values of the characteristics of the structural strength of the foam concrete mixture were entered into the matrix. As a result, mathematical models of plastic strength, speed, and intensity of plastic strength of the foam concrete mixture were calculated and the influence of variable factors studied on the isosurfaces of these properties was visualized. The analysis of these dependencies made it possible to determine the characteristic recipe and technological conditions for obtaining a foam concrete mixture with the required values of plastic strength.


2021 ◽  
Vol 12 (1) ◽  
pp. 104
Author(s):  
Evgenii M. Shcherban’ ◽  
Sergey A. Stel’makh ◽  
Alexey Beskopylny ◽  
Levon R. Mailyan ◽  
Besarion Meskhi ◽  
...  

The relevant problem of choosing effective materials for enclosing structures is compliance with the requirements of increased thermal resistance, reduced mass of buildings and structures, and reduced material consumption, labor intensity, and construction costs. These requirements are satisfied by structures made of lightweight fiber-reinforced concrete, which are the subject of attention of many scientists and engineers. One of the most rational requirements for industrial use is the activation of untreated components of the concrete mixture. This article is devoted to studying the influence of the activation of fiber-reinforced concrete elements in the vortex layer apparatus on concrete strength and structural characteristics. The effect of the raw component processing time of the concrete mixture on the strength and deformation characteristics of the lightweight fiber-reinforced concrete was studied. The optimal processing time for the cement–sand mortar in the VLA-75-85s was determined. It was shown that the activation of the vortex layer in the apparatus leads to an increase in strength from 27% to 61% and an improvement in the deformation characteristics of lightweight fiber-reinforced concrete by up to 12%. Furthermore, it was found that the use of activation in VLA leads to an increase in the coefficient of constructive quality for all experimentally determined strength characteristics of lightweight fiber-reinforced concrete by up to 27%.


2021 ◽  
Vol 2131 (4) ◽  
pp. 042034
Author(s):  
E Bartenjeva

Abstract An effective method for increasing the aggregate stability of non-autoclave heat-insulating foam concrete is proposed. This material is prepared using a two-stage technology on a turbulent-type installation. An increase in the stability of the foam in the mortar mixture by 9.5-23% has been established. An increase in the viscosity of the foam concrete mixture by 13.5% was revealed. Wollastonite and diopside are actively involved in the formation of a stable structure of foam concrete and are structurally modifying centers. The introduction of mineral additives contributes to the formation of a homogeneous stable structure of non-autoclave foam concrete. Thus, an increase in the stability of the cellular system in the technology of non-autoclave cement-ash foam concrete is possible due to the control of the processes of structure formation when using dispersed mineral additives of wollastonite and diopside. Due to the structural-modifying effect of additives as crystallization centers for neoplasms, a more complete hydration of the cement and a strong contact of the additives with the cement stone should be ensured


2021 ◽  
Vol 2131 (5) ◽  
pp. 052064
Author(s):  
E Matus ◽  
M Soppa

Abstract Solution to the problem of current density distribution in a fragment of a steel fiber concrete mixture is obtained, using the finite element method. It is shown that the fiber-concrete contact layer makes a significant contribution to the effective electrical conductivity of the mixture. More than 50% of the total current flows through the reinforcing fibers. The conductivity of the mixture increases in proportion to the reinforcement coefficient. It increases 2-3 times, depending on the choice of the contact properties, reinforcing 2% by volume layer. Experimental data that confirm the indicated dependence are presented. Also, a solution to the problem of heat distribution in a fragment of steel-fiber-concrete mixture in stationary and non-stationary modes of external heating and electrode heating was obtained. It is shown that the effective thermal conductivity coefficient increases in proportion to the reinforcement coefficient. A significant effect of the contact layer parameters on thermal conductivity is shown, comparison with experimental data. Significant heat release in the area of contact zone and in fiber leads to a temperature rise in these zones by 20-30 degrees in a stationary mode. The temperature distribution in fiber-reinforced concrete during induction heating is considered. In this case, it is necessary to significantly increase the frequency of the current used. The study results can be used, prescribing electric heating modes for products made of dispersion-reinforced concrete.


2021 ◽  
Vol 5 ◽  
pp. 100275
Author(s):  
Gaurav Tatrari ◽  
Chetna Tewari ◽  
Bhashkar Singh Bohra ◽  
Sandeep Pandey ◽  
Manoj Karakoti ◽  
...  

2021 ◽  
Vol 50 (2) ◽  
pp. 20210283
Author(s):  
Jhony Habbouche ◽  
Murugaiyah Piratheepan ◽  
Elie Y. Hajj ◽  
Sailesh Bista ◽  
Peter E. Sebaaly

Sign in / Sign up

Export Citation Format

Share Document