source zone
Recently Published Documents


TOTAL DOCUMENTS

344
(FIVE YEARS 85)

H-INDEX

32
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Tiantian Zhang ◽  
Yueping Yin ◽  
Bin Li ◽  
Yang Gao ◽  
Meng Wang

Abstract On October 17 and 29, 2018, two rock and glacier avalanches occurred on the western slope of the Sedongpu Basin upstream of the Yarlung Zangbo River in the Tibetan Plateau, forming the disaster chains and causing damage to many bridges and roads. Based on the comparative analysis of multiple pre-and post-remote sensing images, the initial sliding body, which was composed of rock and glacial material, was located on a steep slope above an elevation of 6000 m. Under the coupling effect of multiple factors such as gravity, rainfall, and weather changes, the initial sliding body detached from the source zone and then transformed into a debris flow after impact and fragmentation. The debris flow traveled downstream and scraped loose glacial till in its path, causing the volume of the sliding body to increase. In addition, the debris flow traveled 10 km under low frictional resistance, as a result of the lubrication via early rainfall and glacial meltwater. Eventually, the debris flow rushed out onto the valley floor, forming a landslide dam and blocking the Yarlung Zangbo River. The deposit volumes on October 17 and 29 were 20.4 million m3 and 10.1 million m3, respectively, with a total mean thickness of ~22m. This study provides an insight into the dynamic process as they unfolded, through multitemporal satellite imagery and numerical simulation. Furthermore, we also discuss the potential cause of rock/ice avalanche and disaster scenarios, as well as the tendency of the rock and glacier avalanches are discussed.


2022 ◽  
Vol 14 (1) ◽  
pp. 511
Author(s):  
Ju Wang ◽  
Yue Zhong ◽  
Zhuoqiong Li ◽  
Chunsheng Fang

The central Liaoning urban agglomeration is an important heavy industry development base in China, and also an important part of the economy in northeast China. The atmospheric environmental problems caused by the development of heavy industry are particularly prominent. Trajectory clustering, potential source contribution (PSCF), and concentration weighted trajectory (CWT) analysis are used to discuss the temporal and spatial pollution characteristics of PM2.5 and ozone concentrations and reveal the regional atmospheric transmission pattern in central Liaoning urban agglomeration from 2015 to 2020. The results show that: (1) PM2.5 in the central Liaoning urban agglomeration showed a decreasing trend from 2015 to 2020. The concentration of PM2.5 is the lowest in 2018. Except for Benxi (34.7 µg/m3), the concentrations of PM2.5 in other cities do not meet the standard in 2020. The ozone concentration in Anshan, Liaoyang, and Shenyang reached the peaks in 2017, which are 68.76 µg/m3, 66.27 µg/m3, and 63.46 µg/m3 respectively. PM2.5 pollution is the highest in winter and the lowest in summer. The daily variation distribution of PM2.5 concentration showed a bimodal pattern. Ozone pollution is the most serious in summer, with the concentration of ozone reaching 131.14 µg/m3 in Shenyang. Fushun is affected by Shenyang intercity pollution, and the ozone concentration is high. (2) In terms of spatial distribution, the high values of PM2.5 are concentrated in monitoring stations in urban areas. On the contrary, the concentration of ozone in suburban stations is higher. The high concentration of ozone in the northeast of Anshan, Liaoyang, Shenyang to Tieling, and Fushun extended in a band distribution. (3) Through cluster analysis, it is found that PM2.5 and ozone in Shenyang are mainly affected by short-distance transport airflow. In winter, the weighted PSCF high-value area of PM2.5 presents as a potential contribution source zone of the northeast trend with wide coverage, in which the contribution value of the weighted CWT in the middle of Heilongjiang is the highest. The main potential source areas of ozone mass concentration in spring and summer are coastal cities and the Bohai Sea and the Yellow Sea. We conclude that the regional transmission of pollutants is an important factor of pollution, so we should pay attention to the supply of industrial sources and marine sources of marine pollution in the surrounding areas of cities, and strengthen the joint prevention and control of air pollution among regions. The research results of this article provide a useful reference for the central Liaoning urban agglomeration to improve air quality.


Author(s):  
Jie Tang ◽  
Fei Liu ◽  
Chong Zhang ◽  
Qiang Xue

Abstract In comparison of modified nanoscale zero-valent iron (NZVI), bare NZVI used to remediate deep contaminated groundwater source areas has more advantages. However, the influences of injected bare NZVI deposition on the permeability of aquifer remain unclear, which are still the key factors of engineering cost and contamination removal. Hence, this study sought to assess method of measuring hydraulic conductivity with constant head device and examine the permeability loss mechanism of NZVI injected into different saturated porous media, using column tests. The results showed that it was feasible to determine hydraulic conductivity by the constant head device. The permeability loss caused by NZVI injection increased with a decrease in grain size of porous media, and was determined by the amount and distribution of NZVI deposition. NZVI distribution area had a good linear correlation with dispersivity of the porous media. Additionally, although surface clogging occurred in all porous media, the amount of NZVI deposition at the injection point in fine sand was largest, so that its permeability loss was the most, which was more likely to cause hydraulic fracturing and then expand the area of contaminant source zone. These results have implications for NZVI field injection to successful groundwater remediation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Liang Wang ◽  
Ying Cheng ◽  
Ravi Naidu ◽  
Peter Gell ◽  
Mark Bowman

Traditional contaminated site characterisation approaches are time-consuming, labour-intensive, and demand a high level of expertise. This case study provides a rapid field-based solution to investigating a VOC contaminated site and its vapour incursion by combining soil vapour and groundwater survey. To fully assess the volatile organic compound (VOC) distribution in a contaminated site, a number of self-developed soil vapour sampling probes (SVSPs) were placed vertically at different locations in a grid with different depths. Hence, 3D subsurface contour maps for VOC concentrations in soil vapour can be obtained and used to help identify hot spots and the migration patterns of VOCs. This SVSP is “easy-to-install” in the field and a cost-effective solution for rapid assessment of soil vapour samples. The SVSPs can be installed both vertically and horizontally. If there is a requirement to take soil vapour samples beneath an existing building from a potential contamination source zone, SVSPs can be horizontally installed beneath the building without compromising its structural integrity. In addition, to ascertain the correct groundwater channels that are likely to carry contaminants from a potential source zone, an electrical resistivity tomography technique was employed to provide the preliminary information for groundwater delineation in a complex groundwater channel network.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6091
Author(s):  
Marwan Marwan ◽  
Muhammad Yanis ◽  
Gartika Setiya Nugraha ◽  
Muzakir Zainal ◽  
Nasrul Arahman ◽  
...  

Magnetotellurics (MT) is an important geophysical method for exploring geothermal systems, with the Earth resistivity obtained from the MT method proving to be useful for the hydrothermal imaging changes of the system. In this research, we applied the MT method to map the geothermal system of the Seulawah Agam volcano in northern Sumatra, a site intended for the construction of a geothermal power plant with an estimated energy of 230 Mwe. Herein, 3D MT measurements were carried out, covering the entire area of the volcano and the various intersecting local faults from the Seulimeum segment in the NW–SE direction. Based on Occam 2D inversion, a conductive anomaly (<10 ohm·m) near the surface was identified in response to specific manifestation areas, including the Heutsz crater on the northern side and the Cempaga crater on the southern side. A further conductive anomaly was also found at a depth of 1 km, which was presumably due to a clay cap layer covering the fluid in the reservoir layer below the surface, where the manifestation areas are formed at various locations (where faults and fractures are found) owing to the fluid in the reservoir rising to the surface. The MT modeling also revealed that the reservoir layer in Seulawah Agam lies at a depth of 2 km with a higher resistivity of 40–150 ohm·m, which is the main target of geothermal energy exploration. At the same time, the heat source zone where magma is located was estimated to lie in two locations, namely, on the northern side centering on the Heutsz crater area and the southern side in the Cempaga crater area. A clear 3D structure obtained via Occam inversion was also used to visualize the hydrothermal flow in the Seulawah Agam volcano that originates from two heat source zones, where one structure that was consistent across all models is the conductive zone that reaches a depth of 5 km in the south in response to the regional faulting of the Seulimeum segment. Based on the MT research, we concluded that the volcano has the geothermal potential to be tapped into power plant energy in the future.


2021 ◽  
Vol 11 (16) ◽  
pp. 7268
Author(s):  
Rui Qu ◽  
Yingfeng Ji ◽  
Weiling Zhu

Accretionary wedge earthquakes usually occur in the overriding crust close to the trench or above the cold nose of the mantle wedge. However, the mechanism and temperature properties related to the slab dip angle remain poorly understood. Based on 3D thermal models to estimate the subduction wedge plate temperature and structure, we investigate the distribution of wedge earthquakes in Alaska, which has a varying slab dip angle along the trench. The horizontal distance of wedge-earthquake hypocenters significantly increases from the Aleutian Islands to south–central Alaska due to a transition from steep subduction to flat subduction. Slab dehydration inside the subducted Pacific plate indicates a simultaneous change in the distances between the intraslab metamorphic fronts and the Alaskan Trench at various depths, which is associated with the flattening of the Pacific plate eastward along the strike. The across-arc width of the wedge-earthquake source zone is consistent with the across-arc width of the surface high topography above the fully dehydrated megathrust, and the fluid upwelling spontaneously influences wedge seismotectonics and orogenesis.


2021 ◽  
pp. SP520-2020-222
Author(s):  
O. E. McLeod ◽  
A. Pittari

AbstractA newly discovered, large volume (3.3 km3) volcanic debris-avalanche is described from the Pirongia Volcano in North Island, New Zealand. Mapping, field surveys and drill core data were used to reconstruct the distribution and facies of the deposit (the Oparau breccia). The debris avalanche was channelised into a lowland graben structure resulting in a prolonged runout distance of ≥20 km and substantial thickness of >200 m in medial areas. The deposit contains block and matrix facies dominated by ankaramite basalt sampled from the oldest parts of the volcanic edifice. The age of deposition of the Oparau breccia is constrained to the period 2.2-1.75 Ma. The collapse source zone is marked by a prominent unconformity on the southwestern flank of the mountain. Movement on faults within the graben is identified as the most likely cause of sector collapse. The collapse scarp is infilled by 5 km3 of post-collapse volcanic material.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5505549


Author(s):  
Maoshen Jia ◽  
Shang Gao ◽  
Changchun Bao

AbstractMultiple sound source localization is a hot issue of concern in recent years. The Single Source Zone (SSZ) based localization methods achieve good performance due to the detection and utilization of the Time-Frequency (T-F) zone where only one source is dominant. However, some T-F points consisting of components from multiple sources are also included in the detected SSZ sometimes. Once a T-F point in SSZ is contributed by multiple components, this point is defined as an outlier. The existence of outliers within the detected SSZ is usually an unavoidable problem for SSZ-based methods. To solve this problem, a multi-source localization by using offset residual weight is proposed in this paper. In this method, an assumption is developed: the direction estimated by all the T-F points within the detected SSZ has a difference along with the actual direction of sources. But this difference is much smaller than the difference between the directions estimated by the outliers along with the actual source localization. After verifying this assumption experimentally, Point Offset Residual Weight (PORW) and Source Offset Residual Weight (SORW) are proposed to reduce the influence of outliers on the localization results. Then, a composite weight is formed by combining PORW and SORW, which can effectively distinguish the outliers and desired points. After that, the outliers are removed by composite weight. Finally, a statistical histogram of DOA estimation with outliers removed is used for multi-source localization. The objective evaluation of the proposed method is conducted in various simulated environments. The results show that the proposed method achieves a better performance compared with the reference methods in sources localization.


Sign in / Sign up

Export Citation Format

Share Document