mobile crowd
Recently Published Documents


TOTAL DOCUMENTS

475
(FIVE YEARS 208)

H-INDEX

31
(FIVE YEARS 10)

2022 ◽  
Vol 22 (1) ◽  
pp. 1-28
Author(s):  
Menatalla Abououf ◽  
Shakti Singh ◽  
Hadi Otrok ◽  
Rabeb Mizouni ◽  
Ernesto Damiani

With the advent of mobile crowd sourcing (MCS) systems and its applications, the selection of the right crowd is gaining utmost importance. The increasing variability in the context of MCS tasks makes the selection of not only the capable but also the willing workers crucial for a high task completion rate. Most of the existing MCS selection frameworks rely primarily on reputation-based feedback mechanisms to assess the level of commitment of potential workers. Such frameworks select workers having high reputation scores but without any contextual awareness of the workers, at the time of selection, or the task. This may lead to an unfair selection of workers who will not perform the task. Hence, reputation on its own only gives an approximation of workers’ behaviors since it assumes that workers always behave consistently regardless of the situational context. However, following the concept of cross-situational consistency, where people tend to show similar behavior in similar situations and behave differently in disparate ones, this work proposes a novel recruitment system in MCS based on behavioral profiling. The proposed approach uses machine learning to predict the probability of the workers performing a given task, based on their learned behavioral models. Subsequently, a group-based selection mechanism, based on the genetic algorithm, uses these behavioral models in complementation with a reputation-based model to recruit a group of workers that maximizes the quality of recruitment of the tasks. Simulations based on a real-life dataset show that considering human behavior in varying situations improves the quality of recruitment achieved by the tasks and their completion confidence when compared with a benchmark that relies solely on reputation.


2022 ◽  
Vol 22 (2) ◽  
pp. 1-15
Author(s):  
Tu N. Nguyen ◽  
Sherali Zeadally

Conventional data collection methods that use Wireless Sensor Networks (WSNs) suffer from disadvantages such as deployment location limitation, geographical distance, as well as high construction and deployment costs of WSNs. Recently, various efforts have been promoting mobile crowd-sensing (such as a community with people using mobile devices) as a way to collect data based on existing resources. A Mobile Crowd-Sensing System can be considered as a Cyber-Physical System (CPS), because it allows people with mobile devices to collect and supply data to CPSs’ centers. In practical mobile crowd-sensing applications, due to limited budgets for the different expenditure categories in the system, it is necessary to minimize the collection of redundant information to save more resources for the investor. We study the problem of selecting participants in Mobile Crowd-Sensing Systems without redundant information such that the number of users is minimized and the number of records (events) reported by users is maximized, also known as the Participant-Report-Incident Redundant Avoidance (PRIRA) problem. We propose a new approximation algorithm, called the Maximum-Participant-Report Algorithm (MPRA) to solve the PRIRA problem. Through rigorous theoretical analysis and experimentation, we demonstrate that our proposed method performs well within reasonable bounds of computational complexity.


2022 ◽  
Vol 70 (3) ◽  
pp. 5199-5212
Author(s):  
Pijush Kanti Dutta Pramanik ◽  
Nilanjan Sinhababu ◽  
Anand Nayyar ◽  
Mehedi Masud ◽  
Prasenjit Choudhury

2022 ◽  
pp. 1113-1131
Author(s):  
Vrushali Gajanan Kadam ◽  
Sharvari Chandrashekhar Tamane ◽  
Vijender Kumar Solanki

The world is growing and energy conservation is a very important challenge for the engineering domain. The emergence of smart cities is one possible solution for the same, as it claims that energy and resources are saved in the smart city infrastructure. This chapter is divided into five sections. Section 1 gives the past, present, and future of the living style. It gives the representation from rural, urban, to smart city. Section 2 gives the explanations of four pillars of big data, and through grid, a big data analysis is presented in the chapter. Section 3 started with the case study on smart grid. It comprises traffic congestion and their prospective solution through big data analytics. Section 4 starts from the mobile crowd sensing. It discusses a good elaboration on crowd sensing whereas Section 5 discusses the smart city approach. Important issues like lighting, parking, and traffic were taken into consideration.


2021 ◽  
Vol 13 (23) ◽  
pp. 13068
Author(s):  
Akbar Ali ◽  
Nasir Ayub ◽  
Muhammad Shiraz ◽  
Niamat Ullah ◽  
Abdullah Gani ◽  
...  

The population is increasing rapidly, due to which the number of vehicles has increased, but the transportation system has not yet developed as development occurred in technologies. Currently, the lowest capacity and old infrastructure of roads do not support the amount of vehicles flow which cause traffic congestion. The purpose of this survey is to present the literature and propose such a realistic traffic efficiency model to collect vehicular traffic data without roadside sensor deployment and manage traffic dynamically. Today’s urban traffic congestion is one of the core problems to be solved by such a traffic management scheme. Due to traffic congestion, static control systems may stop emergency vehicles during congestion. In daily routine, there are two-time slots in which the traffic is at peak level, which causes traffic congestion to occur in an urban transportation environment. Traffic congestion mostly occurs in peak hours from 8 a.m. to 10 a.m. when people go to offices and students go to educational institutes and when they come back home from 4 p.m. to 8 p.m. The main purpose of this survey is to provide a taxonomy of different traffic management schemes for avoiding traffic congestion. The available literature categorized and classified traffic congestion in urban areas by devising a taxonomy based on the model type, sensor technology, data gathering techniques, selected road infrastructure, traffic flow model, and result verification approaches. Consider the existing urban traffic management schemes to avoid congestion and to provide an alternate path, and lay the foundation for further research based on the IoT using a Mobile crowd sensing-based traffic congestion control model. Mobile crowdsensing has attracted increasing attention in traffic prediction. In mobile crowdsensing, the vehicular traffic data are collected at a very low cost without any special sensor network infrastructure deployment. Mobile crowdsensing is very popular because it can transmit information faster, collect vehicle traffic data at a very low cost by using motorists’ smartphone or GPS vehicular embedded sensor, and it is easy to install, requires no special network deployment, has less maintenance, is compact, and is cheaper compared to other network options.


2021 ◽  
Author(s):  
Zhi Gang Jia ◽  
Weiwei Zhao ◽  
Ming Chi ◽  
Jie Luo ◽  
Bing Ren

Increases in the social sector of open data and online mapping technologies are starting new chances for interactive mapping in many research applications. Mobile crowd sensing is an application that gathers data from a network of conscientious volunteers and implements it for a public benefit which is very helpful for collecting related information during the COVID-19 situation. The paper aims to demonstrate the concept of #Safe Mapping Platform which followed a framework of opensource technology and implementation aspects. The #Safe Mapping Platform was established for self-tracking and self-risk managing by integrating GIS opensource technologies, location-based services, and LINE application. The developed platform can be adapted to the public for self-tracking and self-risk managing in any health issues in the future.


2021 ◽  
Author(s):  
Aysha Alharam ◽  
Hadi Otrok ◽  
Wael Elmedany ◽  
Ahsan Baidar Bakht ◽  
Nouf Alkaabi

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ruyan Wang ◽  
Shiqi Zhang ◽  
Zhigang Yang ◽  
Puning Zhang ◽  
Dapeng Wu ◽  
...  

In mobile crowd sensing (MCS), the cloud as a single sensing platform undertakes a large number of communication tasks, leading to the reduction of sensing task execution efficiency and the risk of loss and leakage of users’ private data. In this paper, we propose a spatial ciphertext aggregation scheme with collaborative verification of fog nodes. Firstly, the cloud and fog collaboration architecture is constructed. Fog nodes are introduced for data validation and slices transmission, reducing computing cost on the sensing platform. Secondly, a multipath transmission method of slice data is proposed, in which the user identity and data are transmitted anonymously by the secret sharing method, and the data integrity is guaranteed by hash chain authentication. Finally, a spatial data aggregation method based on privacy protection is presented. The ciphertext aggregation calculation of the sensing platform is realized through Paillier homomorphic encryption, and the problem of insufficient data coverage in the sensing region is solved by the position-based weight interpolation method. The security analysis demonstrates that the scheme can achieve the expected security goal. The simulation results show the feasibility and effectiveness of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document