sand sheets
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 12)

H-INDEX

21
(FIVE YEARS 1)

Geology ◽  
2021 ◽  
Author(s):  
Mark R. Sweeney ◽  
Steven L. Forman ◽  
Eric V. McDonald

Recent research on dust emissions from eolian dunes seeks to improve regional and global emissions estimates and knowledge of dust sources, particularly with a changing climate. Dust emissions from dune fields can be more accurately estimated when considering the whole eolian system composed of active to stabilized dunes, interdunes, sand sheets, and playas. Each landform can emit different concentrations of dust depending on the supply of silt and clay, soil surface characteristics, and the degree to which the landforms are dynamic and interact. We used the Portable In Situ Wind Erosion Laboratory (PI-SWERL) to measure PM10 (particulate matter <10 μm) dust emission potential from landforms in two end-member eolian systems: the White Sands dune field in New Mexico (USA), composed of gypsum, and the Monahans dune field in west Texas, composed of quartz. White Sands is a hotspot of dust emissions where dunes and the adjacent playa yield high dust fluxes up to 8.3 mg/m2/s. In contrast, the active Monahans dunes contain 100% sand and produce low dust fluxes up to 0.5 mg/m2/s, whereas adjacent stabilized sand sheets and dunes that contain silt and clay could produce up to 17.7 mg/m2/s if reactivated by climate change or anthropogenic disturbance. These findings have implications for present and future dust emission potential of eolian systems from the Great Plains to the southwestern United States, with unrealized emissions of >300 t/km2/yr.


2021 ◽  
Author(s):  
Daan Beelen ◽  
Lesli Wood ◽  
Mohamed Zaghloul ◽  
Michiel Arts ◽  
Sebastian Cardona

Sea strait geographies amplify tidal currents, which can result in the formation of tidal strait deposits with a symmetrical facies arrangement. It can be problematic to distinguish such confined tidal strait deposits from strait systems that developed in less constricted settings. To push a more robust differentiation between the confined tidal strait model and a model for less constricted tidal deposits, this study presents an example of a strait-adjacent delta and compares it to the existing model of confined tidal straits. The strait-adjacent delta interpretations are based on an exposed succession in Northern Morocco, that formed in the Miocene Rifian Corridor. The multi-km, seismic-scale exposures at the Ben Allou locality, formed in a region with a largely unconstrained coastline. Clayey and silty portions dominate the distal offshore and prodelta facies, while the proximal delta front and delta plain are comprised of carbonate-rich sandstones. These sandstones exhibit complex architectures of stacked channels and dunes in the delta front, and mud drape-bearing sand sheets on the delta plain. It is shown that the strait-adjacent delta model that is presented herein, is different from a confined tidal strait deposit as it has an asymmetric facies arrangement, and a basinward reduction in depositional energy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Piero Bellanova ◽  
Mike Frenken ◽  
Yuichi Nishimura ◽  
Jan Schwarzbauer ◽  
Klaus Reicherter

AbstractWith a minimum of three reported waves, the 2011 Tohoku-oki tsunami’s destructive force caused massive damage along the northern Japanese Aomori coast. At Misawa the coastal control area was inundated up to 550 m inland and sandy sediment remnants can be traced to c. 350 m (c. 61–63% of the maximum inundation) from the shoreline. Linking the discovery of floatable plastic objects within a woody and organic layer to our analytical data lead to the detection of a yet undocumented woody-organic tsunami deposit first appearing on top of the sandy deposit but then reaching even further inland (approx. 69–72% of the max. inundation). By this observation our understanding of the documented part of the tsunami inundation may be improved. As a consequence, sand sheets of historic and paleo-tsunamis represent minimum estimates for the coastal inundation and underestimation may be reduced by addressing the woody and organic fraction of a tsunami’s inundation.


2021 ◽  
Vol 13 (7) ◽  
pp. 1362
Author(s):  
Marco Manzoni ◽  
Monia Elisa Molinari ◽  
Andrea Monti-Guarnieri

Dunes and sand sheets motion natural hazard affect many desertic areas worldwide and require careful assessment to develop effective mitigation plans to protect populated sites, infrastructure, and human activities. The study explores the suitability of Synthetic Aperture Radar (SAR) coherent methods to detect desert area instabilities and estimate sand accumulations displacements. The SAR methods have been applied to long time series of images provided by Sentinel-1. Moreover, the research introduces a novel robust index, named Temporal Stability Index, able to characterize the percentage of stability of a target with time. The work reports the experiments performed on the United Arab Emirates (UAE) and Egypt desertic areas and proves the usefulness of SAR coherent methods to support sand mitigation measures.


2021 ◽  
Author(s):  
Piero Bellanova ◽  
Mike Frenken ◽  
Yuchi Nishimura ◽  
Jan Schwarzbauer ◽  
Klaus Reicherter

<p>With at least three reported waves, the 2011 Tohoku-oki tsunami’s destructive force caused massive damage along the Aomori coastline in northern Japan. At Misawa the coastal area was inundated up to 550 m inland and sandy sediment remnants can be traced to c. 350 m (c. 61-63% of the maximum inundation) from the shoreline.</p><p>The discovery of a floatable plastic object within a previously inconspicuous woody and organic layer in connection to our analytical data lead to the detection of a yet undocumented ‘invisible’ tsunami deposit. This layer is first appearing on top of the sandy deposit but then reaching even further inland (approx. 69-72% of the max. inundation). Initially the organic and woody layer was not evident during early stages of the field work and this would have been unchanged without the discovery of the floatable plastic particle embedded within the deposit. That critical observation was the turning point for the interpretation of the layer’s origin and thus our understanding of processes during the Tohoku-oki tsunami at the Aomori coast near Misawa harbor. Overall, may the first recognition of this woody-organic and up to now ‘invisible’ layer lead to an improvement in the understanding of tsunami processes and their sedimentological characteristics. Further, may the knowledge obtained from these types of deposits be transferred to and improve paleo-tsunami investigations, especially in rural natural environments, as sand sheets of historic and paleo-tsunamis represent minimum estimates for the coastal inundation and potential underestimations may be reduced by addressing the ‘invisible’ fraction of a tsunami’s inundation.</p>


2021 ◽  
Author(s):  
Itamar Taxel ◽  
Joel Roskin

<p>“Plot-and-Berm” (P&B) agroecosystems consist of sophisticated agricultural utilization of a high-water table within loose sand sheets, situated in agricultural hinterlands. Sunken agricultural plots between 3-6 m high sand berms coated with anthropogenic refuse/fines protect them from erosion. The plot level enables easy access to the groundwater for crop roots and shallow well construction, while refuse and organic material enrich the inert sand forming distinct grey sand-loam anthrosols. The agroecosystems require significant resources for construction and maintenance. The earliest recognized P&B agroecosystems are Early Islamic to early Crusader (9th-early 12th centuries a.d.) within several coastal sand bodies of Israel that were abandoned by unclear reasons. Similar agroecosystems in Iberia and Algeria and the southeastern Mediterranean (mawasi) coast historically date to the Middle Ages and early modern period.  </p><p>Here we reexamine the unpublished data of the only previous excavation (Porath, 1975) and present field and artifactual finds along with pulsed-photon portable luminescence (PPSL) profiling from our 2020 research excavation of the agroecosystem, at the southern outskirts of ancient Caesarea in order to refine understandings on construction materials, structure types and roles, and agroecosystem function, maintenance and timespan.</p><p>Berms are found to be constructed from over 3 m thick anthropogenic-mixed sand while their grey sand-loam anthrosol coat is differentially distributed. The ~30 cm thick grey sand-loam anthrosols of the plots still possess distinct contacts with the over- and under-lying sand. Probes in the eastern margins of the agroecosystem reveal sand with Roman sherds. Structural remains include short stand-alone walls, small storage/watching structures, and a unique structure on the western-most berm overlooking the beach with a 3 m deep stone wall and grey sand loam substrate. All of the structures and earthworks possess Early Islamic ceramics along with remains from Roman-Byzantine Caesarea.</p>


2020 ◽  
Vol 90 (11) ◽  
pp. 1549-1571
Author(s):  
Joshua H. Long ◽  
Till J.J. Hanebuth ◽  
Thomas Lüdmann

ABSTRACT The Quaternary stratigraphy of the continental shelf offshore of South Carolina consists of stratigraphic units deposited in coastal-plain, shallow marine, and shelfal environments bounded by composite erosional surfaces that developed in response to numerous glacioeustatic cycles and were overprinted by regional uplift. These units are commonly distributed laterally, rather than stacked vertically, a function of the long-term low shelf gradient and the resulting lack of accommodation. Additionally, marine processes such as waves and geostrophic currents can rework both relict and modern sediments across the continental shelf. This study integrates high-resolution geological and geophysical datasets acquired offshore and onshore with existing data onshore into a comprehensive conceptual model describing the Quaternary geologic evolution of the coastal plain and continental shelf within a study area of approximately 8,000 km2. We use seismic facies and core analysis to define stratigraphic units associated with transgressive, regressive, and lowstand systems offshore. Regressive systems include progradational wave- and river-dominated deltaic and shoreface deposits. Lowstand systems consist of a complex network of paleo-incisions produced by regional, Piedmont-draining fluvial systems and smaller coastal plain rivers. Transgressive systems include paleochannel-fill successions dominated by mud-rich, tidally influenced backbarrier deposits, cuspate and linear shelf sand ridges, and transgressive sand sheets and shoals. The low-accommodation setting of the continental shelf influences the stratigraphic record in several ways: 1) the geometry of progradational coastal lithosomes, 2) the development of composite allogenic erosional surfaces, 3) the deposition of widespread, thin transgressive sand sheets, and 4) the restriction of thicker transgressive deposits to paleo-incisions. In this setting, the use of a bounding surface scheme that is hierarchical is preferable to the more common sequence stratigraphic or allostratigraphic convention for several reasons: 1) major erosional bounding surfaces are commonly amalgamated; 2) lower-order surfaces capture internal variability, which is key to the genetic interpretation of stratigraphic units, and 3) stratal stacking patterns typically used to define a sequence stratigraphic framework are rare.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Javed N. Malik ◽  
Frango C. Johnson ◽  
Afzal Khan ◽  
Santiswarup Sahoo ◽  
Roohi Irshad ◽  
...  

AbstractAs many as seven tsunamis from the past 8000 years are evidenced by sand sheets that rest on buried wetland soils at Badabalu, southern Andaman Island, along northern part of the fault rupture of the giant 2004 Aceh-Andaman earthquake. The uppermost of these deposits represents the 2004 tsunami. Underlying deposits likely correspond to historical tsunamis of 1881, 1762, and 1679 CE, and provide evidence for prehistoric tsunamis in 1300–1400 CE, in 2000–3000 and 3020–1780 BCE, and before 5600–5300 BCE. The sequence includes an unexplained hiatus of two or three millennia ending around 1400 CE, which could be attributed to accelerated erosion due to Relative Sea-Level (RSL) fall at ~3500 BP. A tsunami in 1300–1400, comparable to the one in 2004, was previously identified geologically on other Indian Ocean shores. The tsunamis assigned to 1679, 1762, and 1881, by contrast, were more nearly confined to the northeast Indian Ocean. Sources have not been determined for the three earliest of the inferred tsunamis. We suggest a recurrence of 420–750 years for mega-earthquakes having different source, and a shorter interval of 80–120 years for large magnitude earthquakes.


2019 ◽  
Author(s):  
Wahyu Widiyanto ◽  
Wei-Cheng Lian ◽  
Shih-Chun Hsiao ◽  
Purwanto B. Santoso ◽  
Rudy T. Imananta

Abstract. A tsunami caused by a flank collapse of the southwest part of the Anak Krakatau volcano occurred on 22 December 2018. The affected area of the tsunami included a coastal area located at the edge of Sunda Strait, Indonesia. To gain an understanding of the tsunami event, field surveys were conducted a month after the incident. The surveys included measurements of runup height, inundation distance, tsunami direction, and sediment characteristics at 20 selected sites. The survey results revealed that the runup height and inundation distance reached 7.8 m and 292.2 m, both was found at Site Cagar Alam, part of Ujung Kulon National Park. Tsunami propagated radially from its source and arrived in coastal zone with direction was between 25° and 350° from North. Sediment samples were collected at 27 points in tsunami deposits with a sediment thickness of 1.5–12 cm. The distance of the sediment deposit area from the coast was 40 %–90 % of the distance of the inundation caused by the tsunami. The highest elevation of deposits was 60 %–90 % of the highest runup. Sand sheets were sporadic, highly variable, and highly influenced by topography. Grain sizes in the deposit area were finer than those at their sources. The sizes ranged from fine sand to boulders, with medium sand and coarse sand being dominant. All sediment samples had a well sorted distribution. An assessment of the boulder movements indicates that the tsunami runup had minimum velocities of 4.0–4.5 m/s.


Sign in / Sign up

Export Citation Format

Share Document