biochemical network
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 30)

H-INDEX

25
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Anastasia Sveshnikova ◽  
Homa MohammadiPeyhani ◽  
Vassily Hatzimanikatis

AbstractSynthetic biology and metabolic engineering rely on computational search tools for predictions of novel biosynthetic pathways to industrially important compounds, many of which are derived from aromatic amino acids. Pathway search tools vary in their scope of covered reactions and compounds, as well as in metrics for ranking and evaluation. In this work, we present a new computational resource called ARBRE: Aromatic compounds RetroBiosynthesis Repository and Explorer. It consists of a comprehensive biochemical reaction network centered around aromatic amino acid biosynthesis and a computational toolbox for navigating this network. ARBRE encompasses over 28’000 known and 100’000 novel reactions predicted with generalized enzymatic reactions rules and over 70’000 compounds, of which 22’000 are known to biochemical databases and 48’000 only to PubChem. Over 1,000 molecules that were solely part of the PubChem database before and were previously impossible to integrate into a biochemical network are included into the ARBRE reaction network by assigning enzymatic reactions. ARBRE can be applied for pathway search, enzyme annotation, pathway ranking, visualization, and network expansion around known biochemical pathways to predict valuable compound derivations. In line with the standards of open science, we have made the toolbox freely available to the scientific community at http://lcsb-databases.epfl.ch/arbre/. We envision that ARBRE will provide the community with a new computational toolbox and comprehensive search tool to predict and rank pathways towards industrially important aromatic compounds.


2021 ◽  
Author(s):  
German Preciat ◽  
Agnieszka B. Wegrzyn ◽  
Ines Thiele ◽  
Thomas Hankemeier ◽  
Ronan MT Fleming

Constraint-based modelling can mechanistically simulate the behaviour of a biochemical system, permitting hypotheses generation, experimental design and interpretation of experimental data, with numerous applications, including modelling of metabolism. Given a generic model, several methods have been developed to extract a context-specific, genome-scale metabolic model by incorporating information used to identify metabolic processes and gene activities in a given context. However, existing model extraction algorithms are unable to ensure that the context-specific model is thermodynamically feasible. This protocol introduces XomicsToModel, a semi-automated pipeline that integrates bibliomic, transcriptomic, proteomic, and metabolomic data with a generic genome-scale metabolic reconstruction, or model, to extract a context-specific, genome-scale metabolic model that is stoichiometrically, thermodynamically and flux consistent. The XomicsToModel pipeline is exemplified for extraction of a specific metabolic model from a generic metabolic model, but it enables multi-omic data integration and extraction of physicochemically consistent mechanistic models from any generic biochemical network. With all input data fully prepared, algorithmic completion of the pipeline takes ~10 min, however manual review of intermediate results may also be required, e.g., when inconsistent input data lead to an infeasible model.


2021 ◽  
Author(s):  
Michael Irvin ◽  
Arvind Ramanathan ◽  
Carlos F Lopez

Mathematical models are often used to study the structure and dynamics of network-driven cellular processes. In cell biology, models representing biochemical reaction networks have provided significant insights but are often plagued by a dearth of available quantitative data necessary for simulation and analysis. This has in turn led to questions about the usefulness of biochemical network models with unidentifiable parameters and high-degree of parameter sloppiness. In response, approaches to incorporate highly-available non-quantitative data and use this data to improve model certainty have been undertaken with various degrees of success. Here we employ a Bayesian inference and Machine Learning approach to first explore how quantitative and non-quantitative data can constrain a mechanistic model of apoptosis execution, in which all models can be identified. We find that two orders of magnitude more ordinal data measurements than those typically collected are necessary to achieve the same accuracy as that obtained from a quantitative dataset. We also find that ordinal and nominal non-quantitative data on their own can be combined to reduce model uncertainty and thus improve model accuracy. Further analysis demonstrates that the accuracy and certainty of model predictions strongly depends on accurate formulations of the measurement as well as the size and make-up of the nonquantitative datasets. Finally, we demonstrate the potential of a data-driven Machine Learning measurement model to identify informative mechanistic features that predict or define nonquantitative cellular phenotypes, from a systems perspective.


2021 ◽  
Vol 18 (177) ◽  
Author(s):  
Tomislav Plesa ◽  
Guy-Bart Stan ◽  
Thomas E. Ouldridge ◽  
Wooli Bae

One of the main objectives of synthetic biology is the development of molecular controllers that can manipulate the dynamics of a given biochemical network that is at most partially known. When integrated into smaller compartments, such as living or synthetic cells, controllers have to be calibrated to factor in the intrinsic noise. In this context, biochemical controllers put forward in the literature have focused on manipulating the mean (first moment) and reducing the variance (second moment) of the target molecular species. However, many critical biochemical processes are realized via higher-order moments, particularly the number and configuration of the probability distribution modes (maxima). To bridge the gap, we put forward the stochastic morpher controller that can, under suitable timescale separations, morph the probability distribution of the target molecular species into a predefined form. The morphing can be performed at a lower-resolution, allowing one to achieve desired multi-modality/multi-stability, and at a higher-resolution, allowing one to achieve arbitrary probability distributions. Properties of the controller, such as robustness and convergence, are rigorously established, and demonstrated on various examples. Also proposed is a blueprint for an experimental implementation of stochastic morpher.


2021 ◽  
Vol 118 (12) ◽  
pp. e2022598118
Author(s):  
Alexander J. Gates ◽  
Rion Brattig Correia ◽  
Xuan Wang ◽  
Luis M. Rocha

The ability to map causal interactions underlying genetic control and cellular signaling has led to increasingly accurate models of the complex biochemical networks that regulate cellular function. These network models provide deep insights into the organization, dynamics, and function of biochemical systems: for example, by revealing genetic control pathways involved in disease. However, the traditional representation of biochemical networks as binary interaction graphs fails to accurately represent an important dynamical feature of these multivariate systems: some pathways propagate control signals much more effectively than do others. Such heterogeneity of interactions reflects canalization—the system is robust to dynamical interventions in redundant pathways but responsive to interventions in effective pathways. Here, we introduce the effective graph, a weighted graph that captures the nonlinear logical redundancy present in biochemical network regulation, signaling, and control. Using 78 experimentally validated models derived from systems biology, we demonstrate that 1) redundant pathways are prevalent in biological models of biochemical regulation, 2) the effective graph provides a probabilistic but precise characterization of multivariate dynamics in a causal graph form, and 3) the effective graph provides an accurate explanation of how dynamical perturbation and control signals, such as those induced by cancer drug therapies, propagate in biochemical pathways. Overall, our results indicate that the effective graph provides an enriched description of the structure and dynamics of networked multivariate causal interactions. We demonstrate that it improves explainability, prediction, and control of complex dynamical systems in general and biochemical regulation in particular.


2021 ◽  
Author(s):  
Daniel C. Volke ◽  
Karel Olavarria ◽  
Pablo Ivan Nikel

Glucose-6-phosphate dehydrogenase (G6PDH) is widely distributed in nature and catalyzes the first committing step in the oxidative branch of the pentose phosphate (PP) pathway, feeding either the reductive PP or the Entner-Doudoroff pathway. Besides its role in central carbon metabolism, this dehydrogenase also provides reduced cofactors, thereby affecting redox balance. Although G6PDH is typically considered to display specificity towards nicotinamide adenine dinucleotide phosphate (NADP+), some variants accept nicotinamide NAD+ similarly (or even preferentially). Furthermore, the number of G6PDH isozymes encoded in bacterial genomes varies from none to more than four orthologues. On this background, we systematically analyzed the interplay of the three G6PDH isoforms of the soil bacterium Pseudomonas putida KT2440 from a genomic, genetic and biochemical perspective. P. putida represents an ideal model to tackle this endeavor, as its genome encodes numerous gene orthologues for most dehydrogenases in central carbon metabolism. We show that the three G6PDHs of strain KT2440 have different cofactor specificities, and that the isoforms encoded by zwfA and zwfB carry most of the activity, acting as metabolic 'gatekeepers' for carbon sources that enter at different nodes of the biochemical network. Moreover, we demonstrate how multiplication of G6PDH isoforms is a widespread strategy in bacteria, correlating with the presence of an incomplete Embden-Meyerhof-Parnas pathway. Multiplication of G6PDH isoforms in these species goes hand-in-hand with low NADP+ affinity at least in one G6PDH isozyme. We propose that gene duplication and relaxation in cofactor specificity is an evolutionary strategy towards balancing the relative production of NADPH and NADH.


2021 ◽  
Vol 7 (1) ◽  
pp. 1115-1146
Author(s):  
Roderick Edwards ◽  
◽  
Michelle Wood

<abstract><p>The Precursor Shutoff Valve (PSV) has been proposed as a motif in biochemical networks, active for example in prioritization of primary over secondary metabolism in plants in low-input conditions. Another branch prioritization mechanism in a biochemical network is a difference in thresholds for activation of the two pathways from the branch point. It has been shown by Adams and colleagues that both mechanisms can play a part in a model of plant metabolism involving Michaelis-Menten kinetics <sup>[<xref ref-type="bibr" rid="b1">1</xref>]</sup>. Here we investigate the potential role of these two mechanisms in systems with steeper activation functions, such as those involving highly cooperative reactions, by considering the limit of infinitely steep activation functions, as is done in Glass networks as models of gene regulation. We find that the Threshold Separation mechanism is completely effective in pathway prioritization in such a model framework, while the PSV adds no additional benefit, and is ineffective on its own. This makes clear that the PSV uses the gradual nature of activation functions to help shut off one branch at low input levels, and has no effect if activation is sharp. The analysis also serves as a case study in assessing behaviour of sharply-switching open systems without degradation of species.</p></abstract>


2020 ◽  
Author(s):  
Jasmin Hafner ◽  
Vassily Hatzimanikatis

AbstractFinding biosynthetic pathways is essential for metabolic engineering of organisms to produce chemicals, biodegradation prediction of pollutants and drugs, and for the elucidation of bioproduction pathways of secondary metabolites. A key step in biosynthetic pathway design is the extraction of novel metabolic pathways from big networks that integrate known biological, as well as novel, predicted biotransformations. However, especially with the integration of big data, the efficient analysis and navigation of metabolic networks remains a challenge. Here, we propose the construction of searchable graph representations of metabolic networks. Éach reaction is decomposed into pairs of reactants and products, and each pair is assigned a weight, which is calculated from the number of conserved atoms between the reactant and the product molecule. We test our method on a biochemical network that spans 6,546 known enzymatic reactions to show how our approach elegantly extracts biologically relevant metabolic pathways from biochemical networks, and how the proposed network structure enables the application of efficient graph search algorithms that improve navigation and pathway identification in big metabolic networks. The weighted reactant-product pairs of an example network and the corresponding graph search algorithm are available online. The proposed method extracts metabolic pathways fast and reliably from big biochemical networks, which is inherently important for all applications involving the engineering of metabolic networks.


Author(s):  
Daniele Suzete Persike ◽  
Suad Yousif Al-Kass

AbstractPost-traumatic stress disorder (PTSD) is a multifaceted syndrome due to its complex pathophysiology. Signals of illness include alterations in genes, proteins, cells, tissues, and organism-level physiological modifications. Specificity of sensitivity to PTSD suggests that response to trauma depend on gender and type of adverse event being experienced. Individuals diagnosed with PTSD represent a heterogeneous group, as evidenced by differences in symptoms, course, and response to treatment. It is clear that the biochemical mechanisms involved in PTSD need to be elucidated to identify specific biomarkers. A brief review of the recent literature in Pubmed was made to explore the major biochemical mechanisms involved in PTSD and the methodologies applied in the assessment of the disease. PTSD shows pre-exposure vulnerability factors in addition to trauma-induced alterations. The disease was found to be associated with dysfunctions of the hypothalamic–pituitary–adrenal axis (HPA) and hypothalamus–pituitary–thyroid axis. Sympathetic nervous system (SNS) activity play a role in PTSD by releasing norepinephrine and epinephrine. Cortisol release from the adrenal cortex amplifies the SNS response. Cortisol levels in PTSD patients, especially women, are later reduced by a negative feedback mechanism which contributes to neuroendocrine alterations and promotes structural changes in the brain leading to PTSD. Gender differences in normal HPA responsiveness may be due to an increased vulnerability in women to PTSD. Serotonin and dopamine levels were found to be abnormal in the presence of PTSD. Mechanisms such as the induction of neuroinflammation and alterations of mitochondrial energy processing were also associated with PTSD.


Sign in / Sign up

Export Citation Format

Share Document