weighted averaging
Recently Published Documents


TOTAL DOCUMENTS

1009
(FIVE YEARS 342)

H-INDEX

57
(FIVE YEARS 12)

Author(s):  
Hafiz Muhammad Athar Farid ◽  
Muhammad Riaz

AbstractSingle-valued neutrosophic sets (SVNSs) and their application to material selection in engineering design. Liquid hydrogen is a feasible ingredient for energy storage in a lightweight application due to its high gravimetric power density. Material selection is an essential component in engineering since it meets all of the functional criteria of the object. Materials selection is a time-consuming as well as a critical phase in the design process. Inadequate material(s) selection can have a detrimental impact on a manufacturer’s production, profitability, and credibility. Multi-criteria decision-making (MCDM) is an important tool in the engineering design process that deals with complexities in material selection. However, the existing MCDM techniques often produce conflicting results. To address such problems, an innovative aggregation technique is proposed for material selection in engineering design based on truthness, indeterminacy, and falsity indexes of SVNSs. Taking advantage of SVNSs and smooth approximation with interactive Einstein operations, single-valued neutrosophic Einstein interactive weighted averaging and geometric operators are proposed. Based on proposed AOs, a robust MCDM approach is proposed for material selection in engineering design. A practical application of the proposed MCDM approach for material selection of cryogenic storage containers is developed. Additionally, the authenticity analysis and comparison analysis are designed to discuss the validity and rationality of the optimal decision.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Ali Farki ◽  
Reza Baradaran Kazemzadeh ◽  
Elham Akhondzadeh Noughabi

Extensive research has been performed on continuous and noninvasive cuff-less blood pressure (BP) measurement using artificial intelligence algorithms. This approach involves extracting certain features from physiological signals, such as ECG, PPG, ICG, and BCG, as independent variables and extracting features from arterial blood pressure (ABP) signals as dependent variables and then using machine-learning algorithms to develop a blood pressure estimation model based on these data. The greatest challenge of this field is the insufficient accuracy of estimation models. This paper proposes a novel blood pressure estimation method with a clustering step for accuracy improvement. The proposed method involves extracting pulse transit time (PTT), PPG intensity ratio (PIR), and heart rate (HR) features from electrocardiogram (ECG) and photoplethysmogram (PPG) signals as the inputs of clustering and regression, extracting systolic blood pressure (SBP) and diastolic blood pressure (DBP) features from ABP signals as dependent variables, and finally developing regression models by applying gradient boosting regression (GBR), random forest regression (RFR), and multilayer perceptron regression (MLP) on each cluster. The method was implemented using the MIMIC-II data set with the silhouette criterion used to determine the optimal number of clusters. The results showed that because of the inconsistency, high dispersion, and multitrend behavior of the extracted features vectors, the accuracy can be significantly improved by running a clustering algorithm and then developing a regression model on each cluster and finally weighted averaging of the results based on the error of each cluster. When implemented with 5 clusters and GBR, this approach yielded an MAE of 2.56 for SBP estimates and 2.23 for DBP estimates, which were significantly better than the best results without clustering (DBP: 6.27, SBP: 6.36).


2022 ◽  
pp. 1-23
Author(s):  
Zeeshan Ali ◽  
Tahir Mahmood ◽  
Kifayat Ullah ◽  
Ronnason Chinram

The major contribution of this analysis is to analyze the confidence complex q-rung orthopair fuzzy weighted averaging (CCQROFWA) operator, confidence complex q-rung orthopair fuzzy ordered weighted averaging (CCQROFOWA) operator, confidence complex q-rung orthopair fuzzy weighted geometric (CCQROFWG) operator, and confidence complex q-rung orthopair fuzzy ordered weighted geometric (CCQROFOWG) operator and invented their feasible properties and related results. Future more, under the invented operators, we diagnosed the best crystalline solid from the family of crystalline solids with the help of the opinion of different experts in the environment of decision-making strategy. Finally, to demonstrate the feasibility and flexibility of the invented works, we explored the sensitivity analysis and graphically shown of the initiated works.


2022 ◽  
Vol 2022 ◽  
pp. 1-20
Author(s):  
Harish Garg ◽  
Zeeshan Ali ◽  
Ibrahim M. Hezam ◽  
Jeonghwan Gwak

A strategic decision-making technique can help the decision maker to accomplish and analyze the information in an efficient manner. However, in our real life, an uncertainty will play a dominant role during the information collection phase. To handle such uncertainties in the data, we present a decision-making algorithm under the single-valued neutrosophic (SVN) environment. The SVN is a powerful way to deal the information in terms of three degrees, namely, “truth,” “falsity,” and “indeterminacy,” which all are considered independent. The main objective of this study is divided into three folds. In the first fold, we state the novel concept of complex SVN hesitant fuzzy (CSVNHF) set by incorporating the features of the SVN, complex numbers, and the hesitant element. The various fundamental and algebraic laws of the proposed CSVNHF set are described in details. The second fold is to state the various aggregation operators to obtain the aggregated values of the considered CSVNHF information. For this, we stated several generalized averaging operators, namely, CSVNHF generalized weighted averaging, ordered weighted average, and hybrid average. The various properties of these operators are also stated. Finally, we discuss a multiattribute decision-making (MADM) algorithm based on the proposed operators to address the problems under the CSVNHF environment. A numerical example is given to illustrate the work and compare the results with the existing studies’ results. Also, the sensitivity analysis and advantages of the stated algorithm are given in the work to verify and strengthen the study.


2022 ◽  
Author(s):  
Yabin Shao ◽  
Ning Wang ◽  
Zengtai Gong

Abstract The confidence levels can reduce the influence of the unreasonable evaluation value was given by the decision maker on the decision-making results. The Archimedean t-norm and t-conorm (ATS) also have many advantages for the processing of uncertain data. Under this environment, the confidence q-rung orthopair fuzzy aggregation operators based on ATS is one of the most successful extensions of confidence q-rung orthopair fuzzy numbers (Cq-ROFNs) in which decrease the deviation caused by the subjective perspective of the decision maker in the multicriteria group decision-making (MCGDM) problems. In this paper, we propose weighted, ordered weighted averaging aggregation operators and weighted, ordered weighted geometric aggregation operators based on ATS, respectively. Moreover, the properties and four specific forms associated with aggregation operators are also investigated. In this study, a novel MCGDM approach is introduced by using the proposed operator. A reasonable example is proposed and compared the results which are obtained by our operators and that in existing literature, so as to verify the rationality and flexible of our method. From the study, we concluded that the proposed method can reduce the impact of extreme data, and makes decision-making results more reasonable by considering the attitudes of decision-makers.


Author(s):  
Vladik Kreinovich

Among many research areas to which Ron Yager contributed are decision making under uncertainty (in particular, under interval and fuzzy uncertainty) and aggregation – where he proposed, analyzed, and utilized the use of Ordered Weighted Averaging (OWA). The OWA algorithm itself provides only a specific type of data aggregation. However, it turns out that if we allows several OWA stages one after another, we get a scheme with a universal approximation property – moreover, a scheme which is perfectly equivalent to deep neural networks. In this sense, Ron Yager can be viewed as a (grand)father of deep learning. We also show that the existing schemes for decision making under uncertainty are also naturally interpretable in OWA terms.


2022 ◽  
pp. 108128652110555
Author(s):  
Ankit Shrivastava ◽  
Jingxiao Liu ◽  
Kaushik Dayal ◽  
Hae Young Noh

This work presents a machine-learning approach to predict peak-stress clusters in heterogeneous polycrystalline materials. Prior work on using machine learning in the context of mechanics has largely focused on predicting the effective response and overall structure of stress fields. However, their ability to predict peak – which are of critical importance to failure – is unexplored, because the peak-stress clusters occupy a small spatial volume relative to the entire domain, and hence require computationally expensive training. This work develops a deep-learning-based convolutional encoder–decoder method that focuses on predicting peak-stress clusters, specifically on the size and other characteristics of the clusters in the framework of heterogeneous linear elasticity. This method is based on convolutional filters that model local spatial relations between microstructures and stress fields using spatially weighted averaging operations. The model is first trained against linear elastic calculations of stress under applied macroscopic strain in synthetically generated microstructures, which serves as the ground truth. The trained model is then applied to predict the stress field given a (synthetically generated) microstructure and then to detect peak-stress clusters within the predicted stress field. The accuracy of the peak-stress predictions is analyzed using the cosine similarity metric and by comparing the geometric characteristics of the peak-stress clusters against the ground-truth calculations. It is observed that the model is able to learn and predict the geometric details of the peak-stress clusters and, in particular, performed better for higher (normalized) values of the peak stress as compared to lower values of the peak stress. These comparisons showed that the proposed method is well-suited to predict the characteristics of peak-stress clusters.


2022 ◽  
Vol 7 (3) ◽  
pp. 4735-4766
Author(s):  
Saleem Abdullah ◽  
◽  
Muhammad Qiyas ◽  
Muhammad Naeem ◽  
Mamona ◽  
...  

<abstract><p>The green chain supplier selection process plays a major role in the environmental decision for the efficient and effective supply chain management. Therefore, the aim of this paper is to develop a mechanism for decision making on green chain supplier problem. First, we define the Hamacher operational law for Pythagorean cubic fuzzy numbers (PCFNs) and study their fundamental properties. Based on the Hamacher operation law of PCFNs, we defined Pythagorean cubic fuzzy aggregation operators by using Hamacher t-norm and t-conorm. Further, we develop a series of Pythagorean cubic fuzzy Hamacher weighted averaging (PCFHWA), Pythagorean cubic fuzzy Hamacher order weighted averaging (PCFHOWA) Pythagorean Cubic fuzzy Hamacher hybrid averaging (PCFHHA), Pythagorean Cubic fuzzy Hamacher weighted Geometric (PCFHWG), Pythagorean Cubic fuzzy Hamacher order weighted Geometric (PCFHOWG), and Pythagorean Cubic fuzzy Hamacher hybrid geometric (PCFHHA) operators. Furthermore, we apply these aggregation operators of Pythagorean Cubic fuzzy numbers to the decision making problem for green supplier selection. We construct an algorithm for the group decision making by using aggregation operators and score function. The proposed decision making method applies to green chain supplier selection problem and find the best green supplier for green supply chain management. The proposed method compared with other group decision techniques under Pythagorean cubic fuzzy information. From the comparison and sensitivity analysis, we concluded that our proposed method is more generalized and effective method.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document