gliding motility
Recently Published Documents


TOTAL DOCUMENTS

517
(FIVE YEARS 100)

H-INDEX

64
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Kazuma Toida ◽  
Wakana Kushida ◽  
Hiroki Yamamoto ◽  
Kyoka Yamamoto ◽  
Kazuma Uesaka ◽  
...  

Colony pattern formations of bacteria with motility manifest complicated morphological self-organization phenomena. Leptolyngbya boryana is the filamentous cyanobacterial species, which has been used as a genetic model organism for studying metabolism including photosynthesis and nitrogen-fixation. Although a widely used type strain (wild type) of this species has not been reported to show any motile activity, we isolated a spontaneous mutant strain which shows active motility (gliding activity) to give rise to complicated colony patters, including comet-like wandering clusters and disk-like rotating vortices on solid media. Whole-genome resequencing identified multiple mutations on the genome in the mutant strain. We confirmed that inactivation of a candidate gene, dgc2 (LBDG_02920), in the wild type background was sufficient to give rise to motility and the morphological colony patterns. This gene encodes a protein, containing the GGDEF motif, which is conserved at the catalytic domain of diguanylate cyclase (DGC). Although DGC has been reported to be involved in biofilm formation, the mutant strain lacking dgc2 significantly facilitated biofilm formation, suggesting a role of DGC for suppressing both gliding motility and biofilm formation. Thus, L. boryana provides an excellent genetic model to study dynamic colony pattern formation, and novel insight on a role of c-di-GMP for biofilm formation.


Author(s):  
Nicole C. Thunes ◽  
Rachel A. Conrad ◽  
Haitham H. Mohammed ◽  
Yongtao Zhu ◽  
Paul Barbier ◽  
...  

Flavobacterium columnare causes columnaris disease in wild and cultured freshwater fish and is a major problem for sustainable aquaculture worldwide. The F. columnare type IX secretion system (T9SS) secretes many proteins and is required for virulence. The T9SS component GldN is required for secretion and for gliding motility over surfaces. Genetic manipulation of F. columnare is inefficient, which has impeded identification of secreted proteins that are critical for virulence. Here we identified a virulent wild-type F. columnare strain (MS-FC-4) that is highly amenable to genetic manipulation. This facilitated isolation and characterization of two deletion mutants lacking core components of the T9SS. Deletion of gldN disrupted protein secretion and gliding motility and eliminated virulence in zebrafish and rainbow trout. Deletion of porV disrupted secretion and virulence but not motility. Both mutants exhibited decreased extracellular proteolytic, hemolytic, and chondroitin sulfate lyase activities. They also exhibited decreased biofilm formation and decreased attachment to fish fins and to other surfaces. Using genomic and proteomic approaches, we identified proteins secreted by the T9SS. We deleted ten genes encoding secreted proteins and characterized the virulence of mutants lacking individual or multiple secreted proteins. A mutant lacking two genes encoding predicted peptidases exhibited reduced virulence in rainbow trout, and mutants lacking a predicted cytolysin showed reduced virulence in zebrafish and rainbow trout. The results establish F. columnare strain MS-FC-4 as a genetically amenable model to identify virulence factors. This may aid development of measures to control columnaris disease and impact fish health and sustainable aquaculture. IMPORTANCE: Flavobacterium columnare causes columnaris disease in wild and aquaculture-reared freshwater fish and is a major problem for aquaculture. Little is known regarding the virulence factors involved in this disease and control measures are inadequate. The type IX secretion system (T9SS) secretes many proteins and is required for virulence, but the secreted virulence factors are not known. We identified a strain of F. columnare (MS-FC-4) that is well suited for genetic manipulation. The components of the T9SS and the proteins secreted by this system were identified. Deletion of core T9SS genes eliminated virulence. Genes encoding ten secreted proteins were deleted. Deletion of two peptidase-encoding genes resulted in decreased virulence in rainbow trout, and deletion of a cytolysin-encoding gene resulted in decreased virulence in rainbow trout and zebrafish. Secreted peptidases and cytolysins are likely virulence factors and are targets for the development of control measures.


2021 ◽  
Vol 118 (48) ◽  
pp. e2114442118
Author(s):  
Kazuhide Yahata ◽  
Melissa N. Hart ◽  
Heledd Davies ◽  
Masahito Asada ◽  
Samuel C. Wassmer ◽  
...  

Plasmodium malaria parasites are obligate intracellular protozoans that use a unique form of locomotion, termed gliding motility, to move through host tissues and invade cells. The process is substrate dependent and powered by an actomyosin motor that drives the posterior translocation of extracellular adhesins which, in turn, propel the parasite forward. Gliding motility is essential for tissue translocation in the sporozoite and ookinete stages; however, the short-lived erythrocyte-invading merozoite stage has never been observed to undergo gliding movement. Here we show Plasmodium merozoites possess the ability to undergo gliding motility in vitro and that this mechanism is likely an important precursor step for successful parasite invasion. We demonstrate that two human infective species, Plasmodium falciparum and Plasmodium knowlesi, have distinct merozoite motility profiles which may reflect distinct invasion strategies. Additionally, we develop and validate a higher throughput assay to evaluate the effects of genetic and pharmacological perturbations on both the molecular motor and the complex signaling cascade that regulates motility in merozoites. The discovery of merozoite motility provides a model to study the glideosome and adds a dimension for work aiming to develop treatments targeting the blood stage invasion pathways.


Vaccines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1370
Author(s):  
Wenlong Cai ◽  
Covadonga R. Arias

Vaccines are widely employed in aquaculture to prevent bacterial infections, but their use by the U.S. catfish industry is very limited. One of the main diseases affecting catfish aquaculture is columnaris disease, caused by the bacterial pathogen Flavobacterium columnare. In 2011, a modified-live vaccine against columnaris disease was developed by selecting mutants that were resistant to rifampin. The previous study has suggested that this vaccine is stable, safe, and effective, but the mechanisms that resulted in attenuation remained uncharacterized. To understand the molecular basis for attenuation, a comparative genomic analysis was conducted to identify specific point mutations. The PacBio RS long-read sequencing platform was used to obtain draft genomes of the mutant attenuated strain (Fc1723) and the parent virulent strain (FcB27). Sequence-based genome comparison identified 16 single nucleotide polymorphisms (SNP) unique to the mutant. Genes that contained mutations were involved in rifampin resistance, gliding motility, DNA transcription, toxin secretion, and extracellular protease synthesis. The results also found that the vaccine strain formed biofilm at a significantly lower rate than the parent strain. These observations suggested that the rifampin-resistant phenotype and the associated attenuation of the vaccine strain result from the altered activity of RNA polymerase (RpoB) and possible disrupted protein secretion systems.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Konrad Beyer ◽  
Simon Kracht ◽  
Jessica Kehrer ◽  
Mirko Singer ◽  
Dennis Klug ◽  
...  

Abstract Background Plasmodium sporozoites are the highly motile forms of malaria-causing parasites that are transmitted by the mosquito to the vertebrate host. Sporozoites need to enter and cross several cellular and tissue barriers for which they employ a set of surface proteins. Three of these proteins are members of the thrombospondin related anonymous protein (TRAP) family. Here, potential additive, synergistic or antagonistic roles of these adhesion proteins were investigated. Methods Four transgenic Plasmodium berghei parasite lines that lacked two or all three of the TRAP family adhesins TRAP, TLP and TREP were generated using positive–negative selection. The parasite lines were investigated for their capacity to attach to and move on glass, their ability to egress from oocysts and their capacity to enter mosquito salivary glands. One strain was in addition interrogated for its capacity to infect mice. Results The major phenotype of the TRAP single gene deletion dominates additional gene deletion phenotypes. All parasite lines including the one lacking all three proteins were able to conduct some form of active, if unproductive movement. Conclusions The individual TRAP-family adhesins appear to play functionally distinct roles during motility and infection. Other proteins must contribute to substrate adhesion and gliding motility. Graphical Abstract


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chao Li ◽  
Amanda Hurley ◽  
Wei Hu ◽  
Jay W. Warrick ◽  
Gabriel L. Lozano ◽  
...  

AbstractBacterial biofilms are aggregates of surface-associated cells embedded in an extracellular polysaccharide (EPS) matrix, and are typically stationary. Studies of bacterial collective movement have largely focused on swarming motility mediated by flagella or pili, in the absence of a biofilm. Here, we describe a unique mode of collective movement by a self-propelled, surface-associated biofilm-like multicellular structure. Flavobacterium johnsoniae cells, which move by gliding motility, self-assemble into spherical microcolonies with EPS cores when observed by an under-oil open microfluidic system. Small microcolonies merge, creating larger ones. Microscopic analysis and computer simulation indicate that microcolonies move by cells at the base of the structure, attached to the surface by one pole of the cell. Biochemical and mutant analyses show that an active process drives microcolony self-assembly and motility, which depend on the bacterial gliding apparatus. We hypothesize that this mode of collective bacterial movement on solid surfaces may play potential roles in biofilm dynamics, bacterial cargo transport, or microbial adaptation. However, whether this collective motility occurs on plant roots or soil particles, the native environment for F. johnsoniae, is unknown.


2021 ◽  
Vol 12 ◽  
Author(s):  
Masaki Mizutani ◽  
Yuya Sasajima ◽  
Makoto Miyata

Mycoplasma pneumoniae, a human pathogenic bacterium, binds to sialylated oligosaccharides and glides on host cell surfaces via a unique mechanism. Gliding motility is essential for initiating the infectious process. In the present study, we measured the stall force of an M. pneumoniae cell carrying a bead that was manipulated using optical tweezers on two strains. The stall forces of M129 and FH strains were averaged to be 23.7 and 19.7 pN, respectively, much weaker than those of other bacterial surface motilities. The binding activity and gliding speed of the M129 strain on sialylated oligosaccharides were eight and two times higher than those of the FH strain, respectively, showing that binding activity is not linked to gliding force. Gliding speed decreased when cell binding was reduced by addition of free sialylated oligosaccharides, indicating the existence of a drag force during gliding. We detected stepwise movements, likely caused by a single leg under 0.2-0.3 mM free sialylated oligosaccharides. A step size of 14-19 nm showed that 25-35 propulsion steps per second are required to achieve the usual gliding speed. The step size was reduced to less than half with the load applied using optical tweezers, showing that a 2.5 pN force from a cell is exerted on a leg. The work performed in this step was 16-30% of the free energy of the hydrolysis of ATP molecules, suggesting that this step is linked to the elementary process of M. pneumoniae gliding. We discuss a model to explain the gliding mechanism, based on the information currently available.


2021 ◽  
Author(s):  
Wei Li ◽  
Janessa Grech ◽  
Johannes Felix Stortz ◽  
Matthew Gow ◽  
Javier Periz ◽  
...  

Apicomplexan parasites, such as Toxoplasma gondii, possess unique organelles, cytoskeletal structures, signalling cascades, replicate by internal budding within a specialised compartment and actively invade and exit the host cell, to name a few aspects of the unique biology that characterise this phylum. Due to their huge phylogenetic distance from well established model organisms, such as opisthokonts, comparative genomics has a limited capacity to infer gene functions and conserved proteins can fulfil different roles in apicomplexans. Indeed, approximately 30% of all genes are annotated as hypothetical and many had a crucial role during the asexual life cycle in genome-wide screens. While the current CRISPR/Cas9-based screens allow the identification of fitness conferring genes, only little information about the respective functions can be obtained. To overcome this limitation, and to group genes of interest into functional groups, we established a conditional Cas9-system in T. gondii that allows phenotypic screens. Using an indicator strain for F-actin dynamics and apicoplast segregation, we identified critical genes required for defined steps during the asexual life cycle. The detailed characterisation of two of these candidates revealed them to be critical for host cell egress and invasion and to act at different time points in the disassembly of the intravacuolar F-actin network. While the signalling linking factor (SLF) is an integral part of a signalling complex required for early induction of egress, a novel conoid protein (conoid gliding protein, CGP) acts late during egress and is required for the activation of gliding motility.


Sign in / Sign up

Export Citation Format

Share Document