venusian surface
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol 30 (1) ◽  
pp. 103-109
Author(s):  
Natan A. Eismont ◽  
Vladislav A. Zubko ◽  
Andrey A. Belyaev ◽  
Ludmila V. Zasova ◽  
Dmitriy A. Gorinov ◽  
...  

Abstract This study discusses the usage of Venus gravity assist in order to choose and reaching any point on Venusian surface. The launch of a spacecraft to Venus during the launch windows of 2029 to 2031 is considered for this purpose. The constraints for the method are the re-entry angle and the maximum possible overload. The primary basis of the proposed strategy is to use the gravitational field of Venus to transfer the spacecraft to an orbit resonant to the Venusian one – with the aim of expanding accessible landing areas. Results of the current research show that this strategy provides an essential increase in accessible landing areas and, moreover, may provide an access to any point on the surface of Venus with a small increase in ∆V required for launch from the Earth and in the flight duration. The comparison with the landing without using gravity assist near planet is also given.


2020 ◽  
Vol 17 (3) ◽  
pp. 99-105
Author(s):  
Ardalan Nasiri ◽  
Simon S. Ang

Abstract A double-layer ceramic electronic packaging technology that survives the Venusian surface temperature of 465°C was developed using a ceramic interlayer dielectric with gold conductors. A 60-μm ceramic interlayer dielectric served as the insulator between the top and bottom gold conductors on high-purity ceramic substrates. Test devices with AuPtPd metallization were attached to the top gold pads using a thick-film gold paste. Thermal aging for 115 h at 500°C and thermal cycling from room temperature to 450°C were performed. Dielectric leakage tests of the interlayer ceramic layer between the top and bottom gold conductors revealed a leakage current density of less than 50 × 10−7 A/cm2 at 600 V after thermal cycling. Gold conductor resistance increased slightly after thermal cycling. The die shear test showed a 33% decrease in die shear strength after thermal tests and its 6.16 kg-F die shear strength satisfies the Military Standard Product Testing Services (MIL-STD) method.


2017 ◽  
Vol 17 (1) ◽  
pp. 96-100 ◽  
Author(s):  
Jason T. Wright

AbstractOne of the primary open questions of astrobiology is whether there is extant or extinct life elsewhere the solar system. Implicit in much of this work is that we are looking for microbial or, at best, unintelligent life, even though technological artefacts might be much easier to find. Search for Extraterrestrial Intelligence (SETI) work on searches for alien artefacts in the solar system typically presumes that such artefacts would be of extrasolar origin, even though life is known to have existed in the solar system, on Earth, for eons. But if a prior technological, perhaps spacefaring, species ever arose in the solar system, it might have produced artefacts or other technosignatures that have survived to present day, meaning solar system artefact SETI provides a potential path to resolving astrobiology's question. Here, I discuss the origins and possible locations for technosignatures of such a prior indigenous technological species, which might have arisen on ancient Earth or another body, such as a pre-greenhouse Venus or a wet Mars. In the case of Venus, the arrival of its global greenhouse and potential resurfacing might have erased all evidence of its existence on the Venusian surface. In the case of Earth, erosion and, ultimately, plate tectonics may have erased most such evidence if the species lived Gyr ago. Remaining indigenous technosignatures might be expected to be extremely old, limiting the places they might still be found to beneath the surfaces of Mars and the Moon, or in the outer solar system.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Corey J. Cochrane ◽  
Jordana Blacksberg ◽  
Mark A. Anders ◽  
Patrick M. Lenahan

Abstract Magnetometers are essential for scientific investigation of planetary bodies and are therefore ubiquitous on missions in space. Fluxgate and optically pumped atomic gas based magnetometers are typically flown because of their proven performance, reliability, and ability to adhere to the strict requirements associated with space missions. However, their complexity, size, and cost prevent their applicability in smaller missions involving cubesats. Conventional solid-state based magnetometers pose a viable solution, though many are prone to radiation damage and plagued with temperature instabilities. In this work, we report on the development of a new self-calibrating, solid-state based magnetometer which measures magnetic field induced changes in current within a SiC pn junction caused by the interaction of external magnetic fields with the atomic scale defects intrinsic to the semiconductor. Unlike heritage designs, the magnetometer does not require inductive sensing elements, high frequency radio, and/or optical circuitry and can be made significantly more compact and lightweight, thus enabling missions leveraging swarms of cubesats capable of science returns not possible with a single large-scale satellite. Additionally, the robustness of the SiC semiconductor allows for operation in extreme conditions such as the hot Venusian surface and the high radiation environment of the Jovian system.


1992 ◽  
Vol 97 (E8) ◽  
pp. 13115 ◽  
Author(s):  
G. Leonard Tyler ◽  
Richard A. Simpson ◽  
Michael J. Maurer ◽  
Edgar Holmann

Icarus ◽  
1988 ◽  
Vol 74 (3) ◽  
pp. 495-515 ◽  
Author(s):  
John R. Marshall ◽  
Ronald Greeley ◽  
David W. Tucker ◽  
James B. Pollack

Nature ◽  
1982 ◽  
Vol 296 (5858) ◽  
pp. 607-608 ◽  
Author(s):  
Lionel Wilson
Keyword(s):  

Eos ◽  
1980 ◽  
Vol 61 (49) ◽  
pp. 1202
Author(s):  
Barbara T. Shore
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document