space distribution
Recently Published Documents


TOTAL DOCUMENTS

910
(FIVE YEARS 179)

H-INDEX

42
(FIVE YEARS 6)

2022 ◽  
Vol 388 ◽  
pp. 111650
Author(s):  
Jianli Hao ◽  
Mingrui Li ◽  
Wenzhen Chen ◽  
Lei Yu ◽  
Lei Ye

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Kenji Shimazoe ◽  
Mizuki Uenomachi ◽  
Hiroyuki Takahashi

AbstractSingle-photon-emission computed tomography (SPECT) and positron-emission tomography (PET) are highly sensitive molecular detection and imaging techniques that generally measure accumulation of radio-labeled molecules by detecting gamma rays. Quantum sensing of local molecular environment via spin, such as nitrogen vacancy (NV) centers, has also been reported. Here, we describe quantum sensing and imaging using nuclear-spin time-space correlated cascade gamma-rays via a radioactive tracer. Indium-111 (111In) is widely used in SPECT to detect accumulation using a single gamma-ray photon. The time-space distribution of two successive cascade gamma-rays emitted from an 111In atom carries significant information on the chemical and physical state surrounding molecules with double photon coincidence detection. We propose and demonstrate quantum sensing capability of local micro-environment (pH and chelating molecule) in solution along with radioactive tracer accumulation imaging, by using multiple gamma-rays time-and-energy detection. Local molecular environment is extracted through electric quadrupole hyperfine interaction in the intermediate nuclear spin state by the explicit distribution of sub-MeV gamma rays. This work demonstrates a proof of concept, and further work is necessary to increase the sensitivity of the technique for in vivo imaging and to study the effect of scattered radiation for possible application in nuclear medicine.


2022 ◽  
Vol 2022 ◽  
pp. 1-7
Author(s):  
Siyuan Hu ◽  
Jingsheng Wang

Ideological and political course is a key course to implement the fundamental task of building morality and cultivating people. Teaching evaluation is an important part of the construction of ideological and political courses. Constructing a perfect teaching evaluation index system is an urgent need to further deepen the teaching reform of ideological and political courses and improve the teaching quality of ideological and political courses. In order to improve the practical application effect of mixed teaching mode, an online and offline mixed teaching effect evaluation method based on big data analysis is proposed. Firstly, the big data in the process of mixed teaching are collected by using big data technology, and the evaluation index system is constructed from three dimensions. The required data are extracted according to the index, and then the association rules between the relevant data of the evaluation index are established, the phase space distribution of the data is obtained. Finally, the constraint parameter analysis method is used to fuse the control variables and explanatory variables of the index-related data to realize the online and offline mixed teaching effect evaluation. The application analysis results show that the method in this paper obtains ideal evaluation results of online and offline mixed teaching effects, which is conducive to improving teaching quality.


Geosciences ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 499
Author(s):  
Marcello Viti ◽  
Enzo Mantovani ◽  
Daniele Babbucci ◽  
Caterina Tamburelli ◽  
Marcello Caggiati ◽  
...  

Tectonic activity in the Mediterranean area (involving migrations of old orogenic belts, formation of basins and building of orogenic systems) has been determined by the convergence of the confining plates (Nubia, Arabia and Eurasia). Such convergence has been mainly accommodated by the consumption of oceanic and thinned continental domains, triggered by the lateral escapes of orogenic wedges. Here, we argue that the implications of the above basic concepts can allow plausible explanations for the very complex time-space distribution of tectonic processes in the study area, with particular regard to the development of Trench-Arc-Back Arc systems. In the late Oligocene and lower–middle Miocene, the consumption of the eastern Alpine Tethys oceanic domain was caused by the eastward to SE ward migration/bending of the Alpine–Iberian belt, driven by the Nubia–Eurasia convergence. The crustal stretching that developed in the wake of that migrating Arc led to formation of the Balearic basin, whereas accretionary activity along the trench zone formed the Apennine belt. Since the collision of the Anatolian–Aegean–Pelagonian system (extruding westward in response to the indentation of the Arabian promontory) with the Nubia-Adriatic continental domain, around the late Miocene–early Pliocene, the tectonic setting in the central Mediterranean area underwent a major reorganization, aimed at activating a less rested shortening pattern, which led to the consumption of the remnant oceanic and thinned continental domains in the central Mediterranean area.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Oleksandr Grebenikov ◽  
Vasyl Loginov ◽  
Andrii Humennyi ◽  
Liliia Buival ◽  
Anton Chumak

Abstract The pilot project of new light civil turboprop aircraft, called the KhAI-90, featuring a cruising speed of 350km/h, payload of 600 kg at 500 km range, and equipped with two turboprop Rolls-Royce 250-B17F engines each with power of 420 hp (alternatively, two AI-450C engines each with power of 450 hp may be installed) is presented herein. Based on the developed technical task, the concept for creating the KhAI-90 new competitive light civil aircraft, and the analysis of prototypes’ aircraft parameters and characteristics, the main tactical and technical requirements are assigned. The take-off weight of the new aircraft is determined in three approximations at the preliminary design stage of light civil turboprop aircraft, using the iterative software “CLA-TOW”, studying the influence of the wing geometric parameters and lift devices on aerodynamic performance, the power-to-weight ratio and the airplane weight parameters. The following parameters are calculated for the design: minimum take-off weight WTO min = 3,600 kg, optimal wing loading p 0 opt = 130 daN/m2, optimal aspect ratio 9.6, taper ratio 2.25, sweep angle at leading edge 3 degrees, airfoil relative thickness 10.6%. A general view and three-dimensional parametric models of the master-geometry and passenger cabin space distribution are constructed for the KhAI-90 by means of the SIEMENS NX computer integrated system. More broadly, this pilot project has also demonstrated the viability of the method we developed and previously reported for determining light civil turboprop airplane parameters.


Author(s):  
Moritz S Fischer ◽  
Marcus Brüggen ◽  
Kai Schmidt-Hoberg ◽  
Klaus Dolag ◽  
Antonio Ragagnin ◽  
...  

Abstract Dark matter self-interactions have been proposed to solve problems on small length scales within the standard cold dark matter cosmology. Here we investigate the effects of dark matter self-interactions in merging systems of galaxies and galaxy clusters with equal and unequal mass ratios. We perform N-body dark matter-only simulations of idealised setups to study the effects of dark matter self-interactions that are elastic and velocity-independent. We go beyond the commonly adopted assumption of large-angle (rare) dark matter scatterings, paying attention to the impact of small-angle (frequent) scatterings on astrophysical observables and related quantities. Specifically, we focus on dark matter-galaxy offsets, galaxy-galaxy distances, halo shapes, morphology and the phase-space distribution. Moreover, we compare two methods to identify peaks: one based on the gravitational potential and one based on isodensity contours. We find that the results are sensitive to the peak finding method, which poses a challenge for the analysis of merging systems in simulations and observations, especially for minor mergers. Large dark matter-galaxy offsets can occur in minor mergers, especially with frequent self-interactions. The subhalo tends to dissolve quickly for these cases. While clusters in late merger phases lead to potentially large differences between rare and frequent scatterings, we believe that these differences are non-trivial to extract from observations. We therefore study the galaxy/star populations which remain distinct even after the dark matter haloes have coalesced. We find that these collisionless tracers behave differently for rare and frequent scatterings, potentially giving a handle to learn about the micro-physics of dark matter.


2021 ◽  
Vol 936 (1) ◽  
pp. 012039
Author(s):  
Aqiyasa Adiba ◽  
Lalu Muhamad Jaelani

Abstract COVID-19 is spreading into Indonesia and has reached tens of thousands of cases as of September 30, 2020. It was recommended by the American Public Health Association and the Centers for Disease Control and Prevention to remain physically active during COVID-19 quarantine by regularly visiting parks and green spaces as it can protect the body against the consequences of quarantine impacting physical and mental health. In this research, green space was monitored by using remotely sensed data. The green space distribution was obtained from the calculation of the Greenness Index from Landsat-8 Surface Reflectance Tier 1 satellite imagery processed through the Google Earth Engine platform. This study was conducted to determine the value of Greenness Index (GI), Case Fatality Rate (CFR) value due to COVID-19, and the relationship between them in 42 sub-districts in DKI Jakarta in the period of April to September 2020. Twenty-eight subdistricts (67%) showed negative correlation values that indicated that more green space in a region affects lower CFR growth.


2021 ◽  
Vol 7 (2) ◽  
pp. 5-26
Author(s):  
Ionel Muntele ◽  
◽  
Raluca-Ioana Horea-Serban ◽  

The study proposes a set of analyses on the evolution of the migration balance of Romania’s population over a wide time interval, fully covering the period dominated by the communist regime (1948-1989) and the last three decades marked by the transition to a market economy. The aim is to differentiate the typology of the time and space distribution of the mentioned indicator and to test a set of explanatory factors, for each of the two distinct periods. The typological and factor analyses applied led to results that largely confirm the hypothesis of a continuity between the massive internal migration during the communist regime and the more complex migration in recent decades. At the same time, the profound changes in the incidence of certain explanatory factors certify a complete restructuring of the migration system in Romania after 1990. The massive migration from rural to urban areas, brought about by positional or socio-economic factors, was gradually replaced after the fall of the communist regime by a strong labour emigration, an effect of deindustrialization. The stimulation of the periurbanization process, by changing the way of life, introduced new variables in the functioning of the migration system, in keeping with the specific evolutions of the contemporary era.


2021 ◽  
Author(s):  
Luke Stagner ◽  
William W Heidbrink ◽  
Mirko Salewski ◽  
Asger Schou Jacobsen ◽  
Benedikt Geiger

Abstract Both fast ions and runaway electrons are described by distribution functions, the understanding of which are of critical importance for the success of future fusion devices such as ITER. Typically, energetic particle diagnostics are only sensitive to a limited subsection of the energetic particle phase-space which is often insufficient for model validation. However, previous publications show that multiple measurements of a single spatially localized volume can be used to reconstruct a distribution function of the energetic particle velocity-space by using the diagnostics' velocity-space weight functions, i.e. Velocity-space Tomography. In this work we use the recently formulated orbit weight functions to remove the restriction of spatially localized measurements and present Orbit Tomography, which is used to reconstruct the 3D phase-space distribution of all energetic particle orbits in the plasma. Through a transformation of the orbit distribution, the full energetic particle distribution function can be determined in the standard {energy,pitch,r,z}-space. We benchmark the technique by reconstructing the fast-ion distribution function of an MHD-quiescent DIII-D discharge using synthetic and experimental FIDA measurements. We also use the method to study the redistribution of fast ions during a sawtooth crash at ASDEX Upgrade using FIDA measurements. Finally, a comparison between the Orbit Tomography and Velocity-space Tomography is shown.


Author(s):  
А. Г. Гребеников ◽  
Ю. В. Дьяченко ◽  
В. В. Коллеров ◽  
В. Ю. Коцюба ◽  
И. В. Малков ◽  
...  

The analysis of the design and technological features of the rotor blades of heavy transport helicopters is carried out. The main performance characteristics of heavy helicopters are presented. General requirements to helicopter main rotor blades design and specifications for their production are formulated. The design and force diagram of heavy helicopter main rotor blades is considered. The features of structural materials for the main rotor blades of heavy transport helicopters are marked. The main rotor blades differ in their design due to different approaches to materials, manufacturing and layout of blade elements. The main rotor blades of an all-metal design, for design and technological reasons, are divided into two groups: a frame structure with a tubular steel spar and an aluminum extruded spar. As a result of a number of design and technological measures the service life of the main rotor blade of helicopter Mi-6 was brought from 50 hours to 1500 hours. The principal peculiarity of the steel tubular spar of the main rotor blade of the Mi-26 helicopter is the absence of the shaft lug. The features of mixed design main rotor blades are presented. The method of parametric modeling of helicopter main rotor blades is presented. The application of the three-dimensional parametric models of structural elements in practice of designing and construction enables to perform numerical calculations of aerodynamic and strength characteristics both of separate aggregates, units and details and of the helicopter as a whole by means of the finite element method. The method of parametric modeling of the main rotor blade of the transport helicopter with the computer system CATIA V5 is a modification of the method of integrated designing of the elements of aviation constructions. Parametric master geometry of the main rotor blade is a linear surface, created by basic profiles of the blade. On the basis of parametric master geometry a space distribution model is created that determines the position of axial planes of the power set of the blade for further creation of the blade detail models. Technological flowchart of main rotor blade manufacturing is presented, manufacturing and surface hardening technology of steel tubular spar is considered. The technology of manufacturing and molding the nose part of the blade of the main rotor mixed design. The technological features of slipway assembly-gluing of the main rotor blade are considered, the content of off-slipway work is given.These materials can be useful in theoretical and experimental studies to extend the service life of the rotor blades of Mi-26 helicopters, which are currently in operation in Ukraine.


Sign in / Sign up

Export Citation Format

Share Document