gas recycling
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 30)

H-INDEX

23
(FIVE YEARS 2)

Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-7
Author(s):  
Yan Li ◽  
Chunsheng Yu ◽  
Kaitao Yuan

A novel approach was proposed for calculating the enriched gas recovery factor based on the theory of two-phase isothermal flash calculations. First, define a new parameter, pseudo formation volume factor of enriched gas, to represent the ratio of the surface volume of produced mixture gas to underground volume of enriched gas. Two logarithmic functions were obtained by matching the flash calculation data, to characterize the relationships between pseudo formation volume factor and the produced gas-oil ratio. These two functions belong to the proportion of liquefied petroleum gas in enriched gas; the proportion is greater than 50% and less than 50%, respectively. Given measured gas-oil ratio and produced gas volume, underground volume of produced enriched gas can be calculated. Injection volume of enriched gas is known; therefore, recovery factor of enriched gas is the ratio of produced to injected volume of enriched gas. This approach is simply to calculate enriched gas recovery factor, because of only needs three parameters, which can be measured directly. New approach was compared to numerical simulation results; mean error is 12%. In addition, new approach can effectively avoid the influence of lean gas on the calculation of enriched gas recycling. Three stages of enriched gas recovery factors in field Z were calculated, and the mean error is 5.62% compared to the field analysis, which proves that the new approach’s correctness and practicability.


2021 ◽  
Author(s):  
Marcel J. Bourgeois ◽  
Hocine Berrahmoun ◽  
Maryam Mohamed Al Attar ◽  
Djilali Boulenouar ◽  
Djelloul Hammadi ◽  
...  

Abstract This paper is based on the analysis of miscible WAG for an onshore Middle-East field, with strongly undersaturated light oil. Water Alternate Gas operations have been ongoing for around 5 years, which is relatively recent compared to more than 40 years of production history. Goal of this work was to assess the efficiency of this miscible hydrocarbon WAG and to optimize it on the different compartments, with respect to miscibility, voidage replacement, and recycling. As this is a large mature field, with WAG operations dispatched on around 50 injectors and 9 fault blocks (compartments), the method of analysis had to be robust with respect to the different injection strategies followed in the past. It was essentially based on injection and production data, but also used pressure data when available. We computed the following dimensionless variables: oil recovery factor, BSW, voidage replacement ratio (VRR), and also WAG ratio and gas recycling ratio (GRR). Their evolution versus time was analyzed and compared between fault blocks. Using dimensionless variables allowed to compare fault blocks with different initial volumes in place, and to illustrate trends versus time. It was also found beneficial to lump some compartments, when communication was substantiated by pressure data. On the production side, we used the conventional BSW and GOR variables to quantify the water and gas recycling ratio. On the injection side, we observed that in some compartments, the historical WAG ratio was too low in the oil zone, which could be quantified by excluding the peripheral water injection volumes. The analysis allowed also to estimate the gas utilization factor and efficiency, which confirmed the overall high efficiency of miscible gas injection in 3-phase mode. It was also found that the injected fluid efficiency correlated with geology: gas injection tends to be more efficient in zones with high permeabilities at the bottom (coarsening downwards), while water injection is better adapted to zones with high permeabilities at the top (coarsening upwards). Estimating these water and gas efficiencies also allowed to optimize the injection strategy on a field level, by comparing the water efficiency with other units of the field only under waterflood.


2021 ◽  
Vol 6 ◽  
pp. 11-19
Author(s):  
Igor Dolotovsky ◽  
Evgeni Larin

A novel polygeneration technology and equipment concept has been suggested for energy and water supply systems of oil and gas enterprises. It was created in order to enhance opportunities of mutual integration of power and manufacturing systems using recuperation and recycling. As an example, we have described a system which incorporates modules for combined energy resource and water generation as well as wastewater and low pressure hydrocarbon gas recycling. Feasibility of polygeneration and mutual integration was assessed with use of a multi-criterion concidering efficiency and effectiveness.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2134
Author(s):  
Shan Yu ◽  
Lei Shao ◽  
Zongshu Zou ◽  
Henrik Saxén

Given the urgent pursuit of carbon neutrality and stringent climate policies, the H2 shaft furnace (H2-SF) is starting to gain widespread attention in the steel industry. In this study, the performance of the H2-SF under operation with a dual-row injection top gas recycling system was investigated by a one-dimensional mathematical model. The potential of microwave heating as a means to supply thermal energy in regions of energy deficit was also assessed briefly. The results showed that for scenarios without microwave heating, increasing the upper-row injection rate can improve the furnace performance, and increasing the distance of the upper-row injection level from the furnace top also has a positive effect. A high microwave heating efficiency is expected in regions above the upper-row injection level. For scenarios with microwave heating, a higher microwave power leads to a better furnace performance. Thus, a higher furnace productivity can be achieved by increasing either the upper-row injection rate or the microwave power. However, the latter seems more promising as it decreases the total energy demand due to a better utilization of thermal energy. Based on the comparison of two representative examples, the decrease in the total energy demand is about 0.2 GJ/t-Fe.


Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 276
Author(s):  
Aaron Zipperle ◽  
Barbara Reischl ◽  
Tilman Schmider ◽  
Michael Stadlbauer ◽  
Ivan Kushkevych ◽  
...  

Climate neutral and sustainable energy sources will play a key role in future energy production. Biomethanation by gas to gas conversion of flue gases is one option with regard to renewable energy production. Here, we performed the conversion of synthetic carbon monoxide (CO)-containing flue gases to methane (CH4) by artificial hyperthermophilic archaeal co-cultures, consisting of Thermococcus onnurineus and Methanocaldococcus jannaschii, Methanocaldococcus vulcanius, or Methanocaldococcus villosus. Experiments using both chemically defined and complex media were performed in closed batch setups. Up to 10 mol% CH4 was produced by converting pure CO or synthetic CO-containing industrial waste gases at a high rate using a co-culture of T. onnurineus and M. villosus. These findings are a proof of principle and advance the fields of Archaea Biotechnology, artificial microbial ecosystem design and engineering, industrial waste-gas recycling, and biomethanation.


Author(s):  
Reza Azin ◽  
Amin Izadpanahi ◽  
Mohamad Mohamadi-Baghmolaei
Keyword(s):  

2021 ◽  
Vol MA2021-03 (1) ◽  
pp. 9-9
Author(s):  
Kazuo Nakamura ◽  
Takahiro Ide ◽  
Yasuharu Kawabata ◽  
Tatsuya Nakajima ◽  
Tatsuki Dohkoh ◽  
...  

2021 ◽  
Vol 103 (1) ◽  
pp. 31-39
Author(s):  
Kazuo Nakamura ◽  
Takahiro Ide ◽  
Yasuharu Kawabata ◽  
Tatsuya Nakajima ◽  
Tatsuki Dohkoh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document