activation heat
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 13)

H-INDEX

13
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Vitaliy V. Chelnokov ◽  
Elena Zabolotnaya ◽  
Aleksey V. Matasov ◽  
Andrey N. Glushko ◽  
Stanyslav V. Michailin

The aim of this research was to examine the combustion process of the magnetic-electric activation of hydrocarbon-containing waste gases for heat generation. A method for analyzing the composition of the gases was also developed. Keywords: industrial gas combustion, magnetic-electric activation, heat generation


2021 ◽  
Author(s):  
Willem J. van der Laarse ◽  
Sylvia J.P. Bogaards ◽  
Ingrid Schalij ◽  
Anton Vonk Noordegraaf ◽  
Frédérick M. Vaz ◽  
...  

Right-sided myocardial mechanical efficiency (work output/metabolic energy input) in pulmonary hypertension can be severely reduced. We determined the contribution of intrinsic myocardial determinants of efficiency using papillary muscle preparations from monocrotaline-induced pulmonary hypertensive (MCT-PH) rats. The hypothesis was tested that efficiency is reduced by mitochondrial dysfunction in addition to increased activation heat reported previously. Right ventricular (RV) muscle preparations were subjected to 5 Hz sinusoidal length changes at 37°C. Work and suprabasal oxygen consumption (VO2) were measured before and after cross-bridge inhibition by blebbistatin. Cytosolic cytochrome c concentration, myocyte cross-sectional area, proton permeability of the inner mitochondrial membrane (PP IMM), and monoamine oxidase (MAO)-A and glucose 6-phosphate dehydrogenase (G-6-PDH) activities and phosphatidylglycerol (PG) and cardiolipin (CL) contents were determined. Mechanical efficiency ranged from 23 to 11% in control (n = 6) and from 22 to 1% in MCT-PH (n = 15) and correlated with work (r2 = 0.68, P < 0.0001) but not with VO2 (r2 = 0.004, P = 0.7919). VO2 for cross-bridge cycling was proportional to work (r2 = 0.56, P = 0.0005). Blebbistatin-resistant VO2 (r2 = 0.32, P = 0.0167) and IMM PP (r2 = 0.36, P = 0.0110) correlated inversely with efficiency. Together, these variables explained the variance of efficiency (coefficient of multiple determination R2 = 0.79, P = 0.0001). Cytosolic cytochrome c correlated inversely with work (r2 = 0.28, P = 0.0391), but not with efficiency (r2 = 0.20, P = 0.0867). G-6-PDH, MAO-A and PG/CL increased in the RV wall of MCT-PH but did not correlate with efficiency. Reduced myocardial efficiency in MCT-PH is due to activation processes and mitochondrial dysfunction. The variance of work and the ratio of activation heat reported previously and blebbistatin-resistant VO2 are discussed.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7907
Author(s):  
Yousef Darvishi ◽  
Seyed Reza Hassan-Beygi ◽  
Payam Zarafshan ◽  
Khadijeh Hooshyari ◽  
Urszula Malaga-Toboła ◽  
...  

The present study sought to analyze a novel type of polymer membrane fuel cell to be used in vehicles. The performance of the fuel cell was evaluated by modeling the types of production–consumption heat in the anode and cathode (including half-reaction heat, activation heat, and absorption/desorption heat) and waterflood conditions. The meshing of flow channels was carried out by square cells and the governing equations were numerically discretized in the steady mode using the finite difference method followed by solving in MATLAB software. Based on the simulation results, the anodic absorption/desorption heat, anodic half-reaction heat, and cathodic activation heat are positive while the cathodic absorption/desorption heat and cathodic half-reaction heat show negative values. All heat values exhibit a decremental trend over the flow channel. Considering the effect of relative humidity, the relative humidity of the cathode showed no significant change while the anode relative humidity decreased along the flow channel. The velocity at the membrane layer was considerably lower, due to the smaller permeability coefficient of this layer compared to the gas diffusion and reactants (cathode) layers.


ACS Catalysis ◽  
2021 ◽  
pp. 11532-11541
Author(s):  
Sarah A. Hindson ◽  
H. Adrian Bunzel ◽  
Bettina Frank ◽  
Dimitri A. Svistunenko ◽  
Christopher Williams ◽  
...  

2021 ◽  
Author(s):  
Sarah A Hindson ◽  
Adrian H Bunzel ◽  
Bettina Frank ◽  
Dimitri A Svistunenko ◽  
Christopher Williams ◽  
...  

Conformational sampling profoundly impacts the overall activity and temperature dependence of enzymes. Peroxidases have emerged as versatile platforms for high value biocatalysis owing to their broad palette of potential biotransformations. Here, we explore the role of conformational sampling in mediating the activity of a de novo peroxidase. We demonstrate that 2,2,2-triflouoroethanol (TFE) affects the equilibrium of enzyme conformational states, tending towards a more globally rigid structure. This is correlated with increases both stability and activity. Notably, these effects are concomitant with the emergence of curvature in the temperature-activity profile, trading off activity gains at ambient temperature with losses at high temperatures. We apply macromolecular rate theory (MMRT) to understand enzyme temperature dependence data. These data point to an increase in protein rigidity associated with a difference in the distribution of protein dynamics between the ground and transition state. We compare the thermodynamics of the de novo enzyme activity to those of a natural peroxidase, horserad-ish peroxidase. We find that the native enzyme resembles the rigidified de novo enzyme in terms of the thermodynamics of enzyme catalysis and the putative distribution of protein dynamics between the ground and transitions state. The addition of TFE apparently causes C45 to behave more like the natural enzyme. Our data suggest robust, generic strategies for improving biocatalytic activity by manipulating protein rigidity; for functional de novo protein catalysts in particular, this can provide more enzyme-like catalysts without further rational engineering, computational redesign or directed evolution.


2021 ◽  
Author(s):  
Felix Kaspar ◽  
Darian S. Wolff ◽  
Peter Neubauer ◽  
Anke Kurreck ◽  
Vickery Arcus

Enzyme-catalyzed reactions sometimes display curvature in their Eyring plots in the absence of denaturation, indicative of a change in activation heat capacity. However, pH and (de)protonation effects on this phenomenon have remained unexplored. Herein, we report a kinetic characterization of the thermophilic pyrimidine nucleoside phosphorylase from <i>Geobacillus thermoglucosidasius</i> across a two-dimensional working space covering 35 °C and 3 pH units with two substrates displaying different pK<sub>a</sub> values. Our analysis revealed the presence of a measurable activation heat capacity change in this reaction system, which showed no significant dependence on medium pH or substrate charge. Our results further describe the remarkable effects of a single halide substitution which has a minor influence on the heat capacity change but conveys a significant kinetic effect by lowering the activation enthalpy, causing a >10-fold rate increase. Collectively, our results present an important piece in the understanding of enzymatic systems across multidimensional working spaces where the choice of reaction condition can affect rate, affinity and thermodynamic phenomena independently of one another.<br>


2021 ◽  
Author(s):  
Felix Kaspar ◽  
Darian S. Wolff ◽  
Peter Neubauer ◽  
Anke Kurreck ◽  
Vickery Arcus

Enzyme-catalyzed reactions sometimes display curvature in their Eyring plots in the absence of denaturation, indicative of a change in activation heat capacity. However, pH and (de)protonation effects on this phenomenon have remained unexplored. Herein, we report a kinetic characterization of the thermophilic pyrimidine nucleoside phosphorylase from <i>Geobacillus thermoglucosidasius</i> across a two-dimensional working space covering 35 °C and 3 pH units with two substrates displaying different pK<sub>a</sub> values. Our analysis revealed the presence of a measurable activation heat capacity change in this reaction system, which showed no significant dependence on medium pH or substrate charge. Our results further describe the remarkable effects of a single halide substitution which has a minor influence on the heat capacity change but conveys a significant kinetic effect by lowering the activation enthalpy, causing a >10-fold rate increase. Collectively, our results present an important piece in the understanding of enzymatic systems across multidimensional working spaces where the choice of reaction condition can affect rate, affinity and thermodynamic phenomena independently of one another.<br>


2020 ◽  
Author(s):  
H. Adrian Bunzel ◽  
J. L. Ross Anderson ◽  
Donald Hilvert ◽  
Vickery L. Arcus ◽  
Marc W. van der Kamp ◽  
...  

AbstractActivation heat capacity is emerging as a crucial factor in enzyme thermoadaptation, as shown by non-Arrhenius behaviour of many natural enzymes1,2. However, its physical origin and relationship to evolution of catalytic activity remain uncertain. Here, we show that directed evolution of a computationally designed Kemp eliminase introduces dynamical changes that give rise to an activation heat capacity absent in the original design3. Extensive molecular dynamics simulations show that evolution results in the closure of solvent exposed loops and better packing of the active site with transition state stabilising residues. Remarkably, these changes give rise to a correlated dynamical network involving the transition state and large parts of the protein. This network tightens the transition state ensemble, which induces an activation heat capacity and thereby nonlinearity in the temperature dependence. Our results have implications for understanding enzyme evolution (e.g. in explaining the role of distal mutations and evolutionary tuning of dynamical responses) and suggest that integrating dynamics with design and evolution will accelerate the development of efficient novel enzymes.


Sign in / Sign up

Export Citation Format

Share Document