optimum process
Recently Published Documents


TOTAL DOCUMENTS

693
(FIVE YEARS 190)

H-INDEX

23
(FIVE YEARS 4)

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 114
Author(s):  
Antai Chang ◽  
Xia Zheng ◽  
Hongwei Xiao ◽  
Xuedong Yao ◽  
Decheng Liu ◽  
...  

The main objective of the present work was to study the drying kinetics and obtain the optimum process parameters of cantaloupe slices using short-and medium-wave infrared radiation (SMIR) drying technology. The effect of three independent variables of infrared radiation temperature (55–65 °C), slice thickness (5–9 mm) and radiation distance (80–160 mm) on the L value, color difference (∆E), hardness and vitamin C content were investigated by using the Response Surface Methodology (RSM). The results showed that the Page model can adequately predict the moisture content between 55 and 65 °C (R2 > 0.99). The effective moisture diffusivity (Deff) varied from 5.26 × 10−10 to 2.09 × 10−9 m2/s and the activation energy (Ea) of the SMIR drying was 31.84 kJ/mol. Infrared radiation temperature and slice thickness exerted extremely significant effects on L value and color difference (ΔE) (p < 0.01), with higher infrared radiation temperature and thin slice thickness leading to a decrease in the L value and an increase in ΔE. Hardness and vitamin C content were significantly affected by infrared radiation temperature, slice thickness and radiation distance, of which the slice thickness was the most distinct factor affecting the hardness value. Higher infrared radiation temperature and larger slice thickness and radiation distance resulted in higher vitamin C degradation. For the given constraints (maximized vitamin C content and L value, minimized ΔE and hardness value), the optimum drying parameters were infrared radiation temperature 58.2 °C, slice thickness 6 mm and radiation distance 90 mm. Under the optimum drying combination conditions, the experimental values were 65.58 (L value), 8.57 (∆E), 10.49 N (hardness) and 106.58 mg/100 g (vitamin C content), respectively. This study is beneficial to the development of the cantaloupe food processing industry and provides more insights for the application of SMIR drying technology to improve the drying rate and product quality of cantaloupe.


Author(s):  
Agnar Alfons Ramel

The membrane processes include the complex frameworks, typically integrating various physio-chemical aspects, and the biological activities, based on the systems researched. In that regard, the process modeling is essential to predict and simulate the process and the performance of membranes, to infer concerning the optimum process aspects, meant to analyze fouling developments, and principally, the controls and monitoring of processes. Irrespective of the real terminological dissemination such as Machine Learning (ML), the application of computing instruments to the processes of model membrane was considered in the past are insignificant from the scholarly perspective, not contributing to our knowledge of the aspects included. Irrespective of the controversies, in the past two decades, non-mechanistic and data-driven modeling is applicable to illustrate various membrane process, and in the establishment of novel tracking and modeling approaches. In that regard, this paper concentrates on the provision of a custom aspect regarding the use of Non-Mechanistic Modeling (NMM) in membrane processing, assessing the transformations endorsed by our experience, accomplished as a research segment operational in the membrane process segment. Furthermore, the guidelines are the problems for the application of the state-of-the-art computational instruments Membrane Computing (MC).


2022 ◽  
Author(s):  
Medhat Elkelawy ◽  
Safaa El-din H. Etaiw ◽  
Ahmed Mohamed Radwan ◽  
Hitesh Panchal ◽  
Hagar Alm-Eldin Bastawissi

Abstract Nowadays, combustion technologies decarbonization, reduction of harmful emission, and improving thermal efficiency have gained more attention by using clean, sustainable, alternative, and reliable biofuels coupled with using nano particles technologies. Nano heterogeneous catalysts are new promising technologies for converting triglycerides (oil, fats,..etc) into biodiesel, which characterized with saving in the total cost of production. Titanium dioxide (TiO2) nano heterogeneous catalyst used to convert triglyceride represented in waste cooking oil (WCO) into FAME as bio-diesel, where bio-diesel yield fitted the ASTM. In the present research, the results show 95% as a maximum yield at optimum process conditions of 0.01 Wt.% TiO2 loading, 0.3 Wt.% NaoH, reaction temperature (60 ºC), reaction time (60 min), 10:1 methanol to oil volumetric percentage. Effect of mixing different percentage (35, and 70 ppm) of {[Cd (EIN)2(SCN)2]}, SCP 1, Cadmium (II coordination polymer as nanoparticle enhancer, with diesel fuel/biodiesel (60:40 v/v%) (D60B40) on the behavior of one-cylinder direct-injection diesel (DI) engine parameters were examined experimentally and analytically through RSM methodologies. The engine operating variables have been optimized by using CCD method to achieve an optimal BTE. Engine load and nano particles quantity were considered as process input variables to optimize BTE, UHC, and NOx emissions as engine responses. The quadratic regression models were significant and adequate statistically as indicated by the Analysis of variance (ANOVA). The obtained results from (RSM) optimizer indicated that BTE, NOx, and UHC have optimum values of 16.2605%, 544.9157 ppm, and 117.6023 ppm respectively, at 70 ppm of SCP 1 nanoparticles and 2.1919 Kw of break power as optimal predicted values. A validation examination was carried out and the percent of error was within the limit of 5%. BTE, UHC, and NOx have an error percentage of 2.05%, 1.03%, and 1.63%, respectively.


Author(s):  
Naveen Vats

Abstract: Wire electrical release machining (WEDM) innovation has developed at special case rate since it was first applied over long term prior.WEDM is a widely recognized unconventional material cutting process used to manufacture components with complex shapes and profiles of hard materials. In this thermal erosion process, there is no physical contact between the wire tool and work materials. Wire Electrical Discharge Machining (WEDM) is getting more tasks in fields like dies, punches, aero and many more. It is the very difficult task to get optimum process parameters for higher cutting efficiency. In WEDM process rough machining gives lesser accuracy and finish machining gives fine surface finish, but it reduces the machining speed. This review involves process, principle, literature and applications of WEDM using Taguchi array. Keywords: WEDM; Materials; Machine; Cutting efficiency; Optimization process.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Souhir Kmiha ◽  
Chedia Aouadhi ◽  
Khouloud Aziza ◽  
Awatef Bejaoui ◽  
Abderrazak Maaroufi

Spore forming bacteria are special problems for the dairy industry. Heat treatments are insufficient to kill the spores. This is a continuously increasing problem for the industry, but we should be able to control it. In this context, we investigated the combined effect of nisin, monolaurin, and pH values on three heat resistant spores in UHT milk and distilled water and to select an optimal combination for the maximum spore inactivation. The inhibitory effect of nisin (between 50 and 200 IU/ml), monolaurin (ranging from 150 to 300 µg/ml), and pH (between 5 and 8) was investigated using a central composite plan. Results were analyzed using the response surface methodology (RSM). The obtained data showed that the inactivation of Bacillus spores by the combined effect of nisin-monolaurin varies with spore species, acidity, and nature of the medium in which the bacterial spores are suspended. In fact, Terribacillus aidingensis spores were more resistant, to this treatment, than Paenibacillus sp. and Bacillus sporothermodurans ones. The optimum process parameters for a maximum reduction of bacterial spores (∼3log) were obtained at a concentration of nisin >150 IU/ml and of monolaurin >200 µg/ml. The current study highlighted the presence of a synergistic effect between nisin and monolaurin against heat bacterial spores. So, such treatment could be applied by the dairy industry to decontaminate UHT milk and other dairy products from bacterial spores.


Author(s):  
Yanan Li ◽  
Tianhao Zhang

Abstract The influence of laser fluences and scanning speeds on the morphologies of laser-induced periodic surface structures(LIPSS) on heated LiNbO3:Fe(1000○C) surfaces was investigated under femtosecond(fs) laser scanning irradiation. Laser fluence of 8.5 kJ/m2 and scanning speed of 1 mm/s were found to be optimum process parameters, and large-area fs-LIPSS on LiNbO3:Fe with an area of 8 mm×8 mm were fabricated with these parameters. The wettability of laser-textured LiNbO3:Fe changed to be hydrophilic, and the absorptance was improved substantially in the spectral range of 400-2000 nm. This technique is efficient, and environmentally friendly, which will attract tremendous interest in nano-photoelectron and nano-mechanics.


2021 ◽  
Author(s):  
Zohreh Shakeria ◽  
Khaled Benfriha ◽  
Nader Zirak ◽  
Mohammadali Shirinbayan

Abstract One of the most widely used additive manufacturing (AM) methods is Fused Filament Fabrication (FFF), which can produce complex geometry parts. In this process, a continuous filament of thermoplastic material is deposited layer by layer to make the final piece. One of the essential goals in the production of parts with this method is to produce parts with high mechanical properties and excellent geometrical accuracy at the same time. Among the various methods used to improve the desired properties of produced parts is to determine the optimum process parameters in this process. This paper investigates the effect of different process parameters on four essential parameters: chamber temperature, Printing temperature, layer thickness, and print speed on cylindricity, circularity, strength, Young’s modulus, and deformation by Gray Relational Analysis method simultaneously. Taguchi method was used to design the experiments, and the PA6 cylindrical parts were fabricated using a German RepRap X500® 3D printer. Then the GRG values were calculated for all experiments. In the 8th trial, the highest value of GRG was observed. Then, to discover the optimal parameters, the GRG data were analyzed using ANOVA and S/N analysis, and it was determined that the best conditions for enhancing GRG are 60 °C in the chamber temperature, 270 °C in the printing temperature, 0.1 mm layer thickness, and 600 mm/min print speed. Finally, by using optimal parameters, a verification test was performed, and new components were investigated. Finally, by comparing the initial GRG with the GRG of the experiment, it was discovered that the GRG value had improved by 14%.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8176
Author(s):  
Piotr Piersa ◽  
Szymon Szufa ◽  
Justyna Czerwińska ◽  
Hilal Ünyay ◽  
Łukasz Adrian ◽  
...  

This work presents the results of research on the thermo-chemical conversion of woody biomass–pine wood coming from lodzkie voivodship forests and sewage sludge from the Group Sewage Treatment Plant of the Łódź Urban Agglomeration. Laboratory scale analyses of the carbonization process were carried out, initially using the TGA technique (to assess activation energy (EA)), followed by a flow reactor operating at temperature levels of 280–525 °C. Both the parameters of carbonized solid biofuel and biochar as a carrier for fertilizer (proximate and ultimate analysis) and the quality of the torgas (VOC) were analyzed. Analysis of the pine wood and sewage sludge torrefaction process shows clearly that the optimum process temperature would be around 325–350 °C from a mass loss ratio and economical perspective. This paper shows clearly that woody biomass, such as pine wood and sewage sludge, is a very interesting material both for biofuel production and in further processing for biochar production, used not only as an energy carrier but also as a new type of carbon source in fertilizer mixtures.


Sign in / Sign up

Export Citation Format

Share Document