steel balls
Recently Published Documents


TOTAL DOCUMENTS

385
(FIVE YEARS 96)

H-INDEX

20
(FIVE YEARS 3)

Materialia ◽  
2022 ◽  
pp. 101327
Author(s):  
Asghar Aryanfar ◽  
Jihad Jundi ◽  
S. Reza Damadi ◽  
William A. Goddard

2021 ◽  
Author(s):  
Esam A Gomaa ◽  
H A Killa ◽  
H Fathi ◽  
A Farouk

Abstract Preparation of nano tantalum pentoxide and nano cobalt sulfate were prepared by ball milling using Retsch MM2000 apparatus with three stainless steel balls having diameter 12 mm.Preparation of new working electrode was done by adding nano tantalum petoxide to multicarbonnatubes and carbon with specific ratioand finish nano paste put at the tip of glassy carbon electrode and used for use.The redox reaction of nano cobalt sulfate were studied in 0.1M KBr alone at two temperatures 292.15K and 297.15 using cyclic voltammetry.Different solvation and kinetic parameters were calculated at the used two temperatures and their data were discussed.Interaction parameters of the nano cobalt sulfate with Fucgsin acid dye was done to study the complexationcharcheterbeteen the two cyclic voltammetrically and the resulted data are discussed.Different thermodynamic data were evaluated for the interaction of nanocobal sulfate NCS with Fuchsin Acid, FA like stability constants, Gibbs free energies of complexation, enthalpies and entropies were evaluated and their values were discussed


Author(s):  
Diana Hlushkova ◽  
G.A. Avrunin ◽  
Y. V. Ryzhkov ◽  
O.I. Voronkov ◽  
A.I. Stepanuk ◽  
...  

Due to the lack of 63.5 mm balloons in Ukraine in the first layout of Hop-900 hydraulic transmission sample, the balls of the PBG company (Precision Ball and Gauge Co., England) were used. However, the trials of hydraulic transmission showed increased wear and cracks on the surface of the balls. Goal. The purpose of the work is to increase the wear resistance of the units of a pump-controlled hydraulic drive. Methodology. The coating on the TICRN ball was carried out at the Bu-Lat-3T installation. The coating modes were chosen using a methodology for mathematical planning of an experiment by evaluating microhardness of molded coating and the material use factor. Metallographic studies of the structure of the materials studied and sprayed coatings were performed on the digestive and non-digestive grinds on the MIM-8M microscope. The phase composition of the spray coatings was determined on a Don-1.5 diffractometer in monochromatic CUKα radiation. Results. Following the wear resistance of all investigated materials showed the largest wear resistance of the balls with ion-plasma coating on the surface. Originality. The tests of the samples of radial ball-piston hydraulic transmission of GOP-900 type allowed to conclude that their reliability and further improvement is largely due to the reliability of the piston ball, to which there are high requirements for wear resistance, minimum volume of force and temperature deformation. Practical value. Taking into account the negative experience of using imported steel balls from chrome steel, positive experience of using balloons from Steel SH-15CG, mastered by the production of OJSC HARP, and at the same time, the need to increase the heat resistance and wear resistance of balls should be considered as promising research when using beads from powder, rapid steels of type P6M5F3-MP, ceramic balls having high strength properties.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Liang Si ◽  
Yijun Cao ◽  
Guixia Fan

The breakage and liberation of minerals are the key to fluidized mining for minerals. In the ball milling process, steel balls function as not only a grinding action implementer but also energy carrier to determine the breakage behavior of ores and the production capacity of the mill. When ground products present a much coarse or much fine particle size distribution, the separation process will suffer, resulting in inefficient recovery of useful minerals. Optimal control of the particle size distribution of the products is therefore essential, but the complexity and randomness of ball mill grinding make it difficult to determine the appropriate ball size. To solve the problem in the precise measurement of grinding ball diameters, this paper carried out magnetite grinding experiments with grinding balls of different diameters under the same grinding conditions to study the influence pattern of steel ball diameters on the particle break behavior, the particle size distribution of ground products, and the mineral liberation degree distribution. The research proposed on the matching relation between the ball size and the quality of ground products is essential for improving the ground product quality and reducing energy consumption.


Author(s):  
O Akimov ◽  
V. Boiarov ◽  
M. Zhdaniuk ◽  
R. Kholodnyi ◽  
S. Pankov

A large part of BMP-2 Infantry Fighting Vehicles needs to replace turret ball bearing rings. Under realization of replacement of spare parts and components made in Russia with domestic ones, KNVO "Fort" MVO Ministry of Internal Affairs of Ukraine made an experimental batch of balls for turret ball bearing rings of infantry fighting vehicles BMP type. As a result of modernization of a turret ball bearing ring, steel balls were replaced with balls made of composite material. A turret ball bearing is a large radial thrust bearing, cages of which are turret races. A stabile lower race is fixed by means of screws to a top of the vehicle‟s hull. Above the fixed race there is a movable upper race to which the turret is bolted. A method for assessing the reliability of turret ball bearing rings of military armored vehicles was developed. The results of tests of turret ball bearing rings of BMP-2 infantry fighting vehicle tower are given. The reliability of turret ball bearing rings of armored vehicles was assessed taking into account the damage to the balls. The main types of damage to the balls: non-compliance of balls average diameter and non-compliance of the spherical shape of the ball to the requirements of operating documentation. The impact of the probability of no-failure operation of the balls on the durability of the ball bearing is determined. It is necessary to take into account the presence of damage to the balls when determining the durability of the ball bearing. To validate the adequacy of the method, it is necessary to increase the test time of the ball bearing by conducting tests during its operation.


2021 ◽  
Vol 2 (Oktober) ◽  
pp. 22-28
Author(s):  
Arif Setiawan ◽  
Dedy Pradigdo ◽  
Farid Hendro Wibowo

Combat technology in the military world has undergone a very rapid development in both close combat and long-range combat. Long-range combat is identical to a rocket weapon where the rocket works because of the presence of an igniter that serves to burn the propellant so that when the propellant burns it will produce pressure that will push the rocket hurtling towards a predetermined target. Igniter is very important in the launch of rockets where the filling of the igniter is black powder that has been difficult to obtain because of the difficult manufacturing process and risk of explosion. This research aims to design a tool that can produce black powder with a large enough capacity and good quality and reduce the risk of explosions to support the manufacture of igniters for rocket launches, especially those owned by Indonesian Army. This research used pure experimental quantitative method with empirical calculations to obtain tools with the desired specifications. The results obtained after the calculation are the volume of octagonal prism tubes 2942.5 cm3, the total volume of steel balls with two size variations is 979.5 cm3, the maximum lendutan that occurs on the shaft of the player is 0.108 mm, so it is said to be safe.


2021 ◽  
Vol 24 (1) ◽  
Author(s):  
Piotr Chyła

This paper presents the results of metallographic research studies carried out for stock materials as well as the samples collected from the balls formed in the rolling process in a skew rolling mill. The stock material was bearing steel 100Cr6 and the steel from rail scrap. The rolling process was carried out in parallel for the two assumptions: the conventional method (hereinafter referred to as conventional rolling) and the modified method (hereinafter referred to as modified rolling). After the rolling process, three cooling media were used: air, water and oil. The pictures below, which depict microstructures, were taken using the bright-field and the dark-field microscopy technique, the samples were etched with a 4% solution of picral.


Author(s):  
Duy-Vinh Dao ◽  
Jen-Tzong Jeng ◽  
Van-Dong Doan ◽  
Chinh-Hieu Dinh ◽  
Thi-Trang Pham ◽  
...  

Abstract The quality and work-life of ball bearings depending on the material properties of the steel ball, hence it is necessary to carefully classify their properties for bearings and related applications. Classification of steel balls based on the subtle difference in their electromagnetic properties is presented in this paper. The conductivity and magnetic susceptibility for the steel balls of the same kind are measured to investigate the correlation with eddy-current signals. The developed eddy-current sensor works at the resonant frequency of 117 kHz with an optimal readout resistance of 15 kΩ, which helps to boost the signal level without a high-gain preamplifier. To detect the eddy-current signal, the steel ball under test moves through the pickup coil, and the recorded data are used to build the voltage probability map for the classification of the steel ball properties. Experimental results show that the steel balls with and without the hardening process can be identified by the change in the amplitude and phase of the eddy current signal, which is consistent with the observed change in the electromagnetic properties of steel balls. The built system can be applied to the related industries to check the quality of steel balls before use.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6312
Author(s):  
Ayman M. Alaskari ◽  
Abdulaziz I. Albannai ◽  
Abdulkareem S. Aloraier ◽  
Meshal Y. Alawadhi ◽  
Tatiana Liptáková

Surface work hardening is a process of deforming a material surface using a thin layer. It hardens and strengthens the surface while keeping the core relatively soft and ductile to absorb stresses. This study introduces a permanent magnate surface work hardening under two opposite permanent poles of a magnet to investigate its influence on a brass surface. The gap between the brass and the north magnet pole—fixed in the spindle of a vertical machine—was filled with martensitic stainless steel balls. The rotational speed and feed rates were 500–1250 rpm and 6–14 mm min−1, respectively. The novel method improved the surface hardness for all parameters by up to 112%, in favor of high speed, and also increased yield by approximately 10% compared to ground samples. Surface roughness showed higher values for all speed–feed rate combinations compared to the ground sample. Nevertheless, it showed better roughness than other treated conditions with high and low feed rates. The ultimate tensile strength and ductility remained unchanged for all conditions other than the untreated brass. A factorial design and nonlinear regression analysis were performed to predict the microhardness equation and effectiveness of the independent variable—speed and feed rate—for the proposed process.


Sign in / Sign up

Export Citation Format

Share Document