metabolic enzyme
Recently Published Documents


TOTAL DOCUMENTS

771
(FIVE YEARS 294)

H-INDEX

51
(FIVE YEARS 10)

2022 ◽  
Vol 12 ◽  
Author(s):  
Ming Lei ◽  
Meng-Qing Tao ◽  
Yi-Jin Wu ◽  
Liang Xu ◽  
Zhe Yang ◽  
...  

Metabolic intervention is a novel anti-rheumatic approach. The glycolytic regulator NAMPT has been identified as a therapeutic target of rheumatoid arthritis (RA), while other metabolic regulators coordinating NAMPT to perpetuate inflammation are yet to be investigated. We continuously monitored and validated expression changes of Nampt and inflammatory indicators in peripheral while blood cells from rats with collagen-induced arthritis (CIA). Gene transcriptional profiles of Nampt+ and Nampt++ samples from identical CIA rats were compared by RNA-sequencing. Observed gene expression changes were validated in another batch of CIA rats, and typical metabolic regulators with persistent changes during inflammatory courses were further investigated in human subjects. According to expression differences of identified genes, RA patients were assigned into different subsets. Clinical manifestation and cytokine profiles among them were compared afterwards. Nampt overexpression typically occurred in CIA rats during early stages, when iNos and Il-1β started to be up-regulated. Among differentially expressed genes between Nampt+ and Nampt++ CIA rat samples, changes of Tpi1, the only glycolytic enzyme identified were sustained in the aftermath of acute inflammation. Similar to NAMPT, TPI1 expression in RA patients was higher than general population, which was synchronized with increase in RFn as well as inflammatory monocytes-related cytokines like Eotaxin. Meanwhile, RANTES levels were relatively low when NAMPT and TPI1 were overexpressed. Reciprocal interactions between TPI1 and HIF-1α were observed. HIF-1α promoted TPI1 expression, while TPI1 co-localized with HIF-1α in nucleus of inflammatory monocytes. In short, although NAMPT and TPI1 dominate different stages of CIA, they similarly provoke monocyte-mediated inflammation.


Author(s):  
C. Song ◽  
Y. Wang ◽  
J.Y. Liu ◽  
F. Zhao ◽  
X.R. Huang ◽  
...  

Background: Temperature is one of the most important environmental factors affecting the survival, growth and metabolism of fish. The current study was aimed to study the effects of water temperature on the metabolic enzyme activities of juvenile Siganus guttatus. Methods: The juveniles were domesticated at 28±1°C for two weeks and then the temperature was adjusted to the target temperature groups (31°C, 27°C, 23°C and 19°C) by the gradually increasing or decreasing temperature with the change rate of 2°C per day. The experiment lasted for 70 d. At the end of the experiment, the fish were anesthetized and all the livers were dissected on ice plate and stored in the refrigerator at -80°C for the determination of enzyme activity. Result: The activities of glutamic pyruvic transaminase (GPT) and glutamic oxaloacetic transaminase (GOT), hexokinase (HK) and pyruvate kinase (PK), lipoprotein lipase (LPL) and hepatic lipase (HL) tend to be increased with the reduction of temperature. The above enzymes activities in 19°C group were highest. The activity of lactate dehydrogenase (LDH), succinate dehydrogenase (SDH) and citrate synthase (CS) was lowest in 19°C. These results suggests that 19°C had exceeded the suitable temperature range for juvenile S. guttatus. At low temperature, S. guttatus mainly use fat for energy, but less anaerobic metabolism for energy.


2022 ◽  
Vol 23 (2) ◽  
pp. 822
Author(s):  
Yu He ◽  
Ruifan Chen ◽  
Ying Yang ◽  
Guichan Liang ◽  
Heng Zhang ◽  
...  

Camellia oleifera is a widely planted woody oil crop with economic significance because it does not occupy cultivated land. The sugar-derived acetyl-CoA is the basic building block in fatty acid synthesis and oil synthesis in C. oleifera fruit; however, sugar metabolism in this species is uncharacterized. Herein, the changes in sugar content and metabolic enzyme activity and the transcriptomic changes during C. oleifera fruit development were determined in four developmental stages (CR6: young fruit formation; CR7: expansion; CR9: oil transformation; CR10: ripening). CR7 was the key period of sugar metabolism since it had the highest amount of soluble sugar, sucrose, and glucose with a high expression of genes related to sugar transport (four sucrose transporters (SUTs) or and one SWEET-like gene, also known as a sugar, will eventually be exported transporters) and metabolism. The significant positive correlation between their expression and sucrose content suggests that they may be the key genes responsible for sucrose transport and content maintenance. Significantly differentially expressed genes enriched in the starch and sucrose metabolism pathway were observed in the CR6 versus CR10 stages according to KEGG annotation. The 26 enriched candidate genes related to sucrose metabolism provide a molecular basis for further sugar metabolism studies in C. oleifera fruit.


Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 154
Author(s):  
Shofiul Azam ◽  
Ju-Young Park ◽  
In-Su Kim ◽  
Dong-Kug Choi

Piperine (PIP) is an active alkaloid of black and long peppers. An increasing amount of evidence is suggesting that PIP and its metabolite’s could be a potential therapeutic to intervene different disease conditions including chronic inflammation, cardiac and hepatic diseases, neurodegenerative diseases, and cancer. In addition, the omnipresence of PIP in food and beverages made this compound an important investigational material. It has now become essential to understand PIP pharmacology and toxicology to determine its merits and demerits, especially its effect on the central nervous system (CNS). Although several earlier reports documented that PIP has poor pharmacokinetic properties, such as absorption, bioavailability, and blood–brain barrier permeability. However, its interaction with metabolic enzyme cytochrome P450 superfamily and competitive hydrophobic interaction at Monoamine oxide B (MAO-B) active site have made PIP both a xenobiotics bioenhancer and a potential MAO-B inhibitor. Moreover, recent advancements in pharmaceutical technology have overcome several of PIP’s limitations, including bioavailability and blood–brain barrier permeability, even at low doses. Contrarily, the structure activity relationship (SAR) study of PIP suggesting that its several metabolites are reactive and plausibly responsible for acute toxicity or have pharmacological potentiality. Considering the importance of PIP and its metabolites as an emerging drug target, this study aims to combine the current knowledge of PIP pharmacology and biochemistry with neurodegenerative and neurological disease therapy.


2022 ◽  
pp. 132358
Author(s):  
Serdar Burmaoglu ◽  
Elif Akin Kazancioglu ◽  
Mustafa Z. Kazancioglu ◽  
Rüya Sağlamtaş ◽  
Gozde Yalcin ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Dan Li ◽  
Tao Yu ◽  
Junjie Hu ◽  
Jie Wu ◽  
Shi Feng ◽  
...  

Background. CYP39A1 is a poorly characterized metabolic enzyme that has been investigated in a few tumors. However, the role of CYP39A1 in hepatocellular carcinoma (HCC) has not yet been clarified. In this study, the expression and clinical significance of CYP39A1 in HCC were explored. Methods. CYP39A1 protein expression was detected in Akt/c-Met-induced HCC mice and 14 paired fresh HCC samples as well as another 159 HCC and matched noncancerous tissues. Meanwhile, the mRNA expression was analyzed by GEO and TCGA analysis and validated in 14 paired fresh HCC tissues. Furthermore, the relationships between CYP39A1 expression and clinicopathologic features as well as prognosis were analyzed. HCC cell growth changes were analyzed by cell viability assays after CYP39A1 overexpression and then validated after CYP39A1 knockout by DepMap database analysis. Results. CYP39A1 protein expression was lower expressed in HCC mouse models, and its mRNA and protein expression were also downregulated in HCC compared with noncancerous liver tissues. Higher CYP39A1 expression was associated with well differentiation. Moreover, survival analysis indicated that lower CYP39A1 expression was associated with poorer overall survival. In addition, HepG2 and SMMC-7721 cell viability were inhibited after CYP39A1 overexpression. Genome-wide CRISPR/Cas9 proliferation screening indicated that knockout of CYP39A1 could promote HCC cell growth. Likewise, p-NF-κB and Nrf2 were suppressed after CYP39A1 overexpression. It is worth mentioning that total bile acid, total bilirubin, and direct bilirubin were significantly increased in the patients with low CYP39A1 expression. Conclusions. Downregulation of CYP39A1 is associated with HCC carcinogenesis, tumor differentiation, and poor overall survival, suggesting that CYP39A1 may serve as a tumor suppressor gene and novel biomarker for HCC patients.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Ienglam Lei ◽  
Shuo Tian ◽  
Wenbin Gao ◽  
Liu Liu ◽  
Yijing Guo ◽  
...  

Myocardial infarction (MI) is accompanied by severe energy deprivation and extensive epigenetic changes. However, how energy metabolism and chromatin modifications are interlinked during MI and heart repair has been poorly explored. Here, we examined the effect of different carbon sources that are involved in the major metabolic pathways of acetyl-CoA synthesis on myocardial infarction and found that elevation of acetyl-CoA by sodium octanoate (8C) significantly improved heart function in ischemia reperfusion (I/R) rats. Mechanistically, 8C reduced I/R injury by promoting histone acetylation which in turn activated the expression of antioxidant genes and inhibited cardiomyocyte (CM) apoptosis. Furthermore, we elucidated that 8C-promoted histone acetylation and heart repair were carried out by metabolic enzyme medium-chain acyl-CoA dehydrogenase (MCAD) and histone acetyltransferase Kat2a, suggesting that 8C dramatically improves cardiac function mainly through metabolic acetyl-CoA-mediated histone acetylation. Therefore, our study uncovers an interlinked metabolic/epigenetic network comprising 8C, acetyl-CoA, MCAD, and Kat2a to combat heart injury.


2021 ◽  
Vol 48 (No. 4) ◽  
pp. 174-182
Author(s):  
Xiangyi Wu ◽  
Wei Han ◽  
Zaiqiang Yang ◽  
Yixuan Zhang ◽  
Yanjiao Zheng

Plenty of studies have demonstrated that DIF has an effect on the fruit growth. To study the effects of day and night temperature differences on the strawberry sugar quality, an experiment using climate chambers was conducted. Five different differences between the day and night temperatures (DIF) were set, which were 6 °C (28 °C/22 °C, day/night temperature), 8 °C (29 °C/21 °C), 10 °C (30 °C/20 °C), 12 °C (31 °C/19 °C), 14 °C (32 °C/18 °C). The results showed the following indices peaked with a DIF of 12 °C, including the photosynthesis rate, glucose content, fructose content, sucrose content, soluble sugar content and sugar metabolic enzyme activity. The respiration rate increased with the DIF during the day and decreased with the DIF at night. The root dry weight peaked at a DIF of 10 °C, the stolon dry weight peaked at a DIF of 8 °C and the leaf dry weight peaked at a DIF of 6 °C; however, the fruit dry weight reached maximum values at a DIF of 12 °C. The Grey correlation analysis showed that the most important factor in our experiment affecting the fructose content was the sucrose phosphate synthase; however, for the sucrose, glucose, and soluble sugars, the most important factor was the photosynthesis. We found that a DIF of 12 °C (31 °C/19 °C, day/night temperature) was the most suitable for strawberry growth, especially for the sugar content accumulation.


2021 ◽  
Author(s):  
Huaping Li ◽  
Jayne Alexandra Barbour ◽  
Xiaoqiang Zhu ◽  
Jason W. H. Wong

Metabolic reprogramming is a hallmark of cancer characterized by global changes in metabolite levels. However, compared with the study of gene expression, profiling of metabolites in cancer samples remains relatively understudied. We obtained metabolomic profiling and gene expression data from 454 human solid cancer cell lines across 24 cancer types from the Cancer Cell Line Encyclopedia (CCLE) database, to evaluate the feasibility of inferring metabolite levels from gene expression data. For each metabolite, we trained multivariable LASSO regression models to identify gene sets that are most predictive of the level of each metabolite profiled. Even when accounting for cell culture conditions or cell lineage in the model, few metabolites could be accurately predicted. In some cases, the inclusion of the upstream and downstream metabolites improved prediction accuracy, suggesting that gene expression is a poor predictor of steady-state metabolite levels. Our analysis uncovered a single robust relationship between the expression of nicotinamide N-methyltransferase (NNMT) and 1-methylnicotinamide (MNA), however, this relationship could only be validated in cancer samples with high purity, as NNMT is not expressed in immune cells. Together, our findings reveal the challenge of inferring metabolite levels from metabolic enzyme levels and suggest that direct metabolomic profiling is necessary to study metabolism in cancer.


Sign in / Sign up

Export Citation Format

Share Document