rnai pathway
Recently Published Documents


TOTAL DOCUMENTS

216
(FIVE YEARS 109)

H-INDEX

30
(FIVE YEARS 5)

2022 ◽  
Vol 23 (2) ◽  
pp. 873
Author(s):  
Deepani D. Fernando ◽  
Pasi K. Korhonen ◽  
Robin B. Gasser ◽  
Katja Fischer

In a quest for new interventions against scabies—a highly significant skin disease of mammals, caused by a parasitic mite Sarcoptes scabiei—we are focusing on finding new intervention targets. RNA interference (RNAi) could be an efficient functional genomics approach to identify such targets. The RNAi pathway is present in S. scabiei and operational in the female adult mite, but other developmental stages have not been assessed. Identifying potential intervention targets in the egg stage is particularly important because current treatments do not kill this latter stage. Here, we established an RNAi tool to silence single-copy genes in S. scabiei eggs. Using sodium hypochlorite pre-treatment, we succeeded in rendering the eggshell permeable to dsRNA without affecting larval hatching. We optimised the treatment of eggs with gene-specific dsRNAs to three single-copy target genes (designated Ss-Cof, Ss-Ddp, and Ss-Nan) which significantly and repeatedly suppressed transcription by ~66.6%, 74.3%, and 84.1%, respectively. Although no phenotypic alterations were detected in dsRNA-treated eggs for Ss-Cof and Ss-Nan, the silencing of Ss-Ddp resulted in a 38% reduction of larval hatching. This RNAi method is expected to provide a useful tool for larger-scale functional genomic investigations for the identification of essential genes as potential drug targets.


2022 ◽  
Vol 23 (2) ◽  
pp. 696
Author(s):  
Zhiqi Deng ◽  
Liqun Ma ◽  
Peiyu Zhang ◽  
Hongliang Zhu

Small RNAs are significant regulators of gene expression, which play multiple roles in plant development, growth, reproductive and stress response. It is generally believed that the regulation of plants’ endogenous genes by small RNAs has evolved from a cellular defense mechanism for RNA viruses and transposons. Most small RNAs have well-established roles in the defense response, such as viral response. During viral infection, plant endogenous small RNAs can direct virus resistance by regulating the gene expression in the host defense pathway, while the small RNAs derived from viruses are the core of the conserved and effective RNAi resistance mechanism. As a counter strategy, viruses evolve suppressors of the RNAi pathway to disrupt host plant silencing against viruses. Currently, several studies have been published elucidating the mechanisms by which small RNAs regulate viral defense in different crops. This paper reviews the distinct pathways of small RNAs biogenesis and the molecular mechanisms of small RNAs mediating antiviral immunity in plants, as well as summarizes the coping strategies used by viruses to override this immune response. Finally, we discuss the current development state of the new applications in virus defense based on small RNA silencing.


2021 ◽  
Author(s):  
Suparat Taengchaiyaphum ◽  
Prapatsorn Wongkhaluang ◽  
Timothy William Flegel ◽  
Kallaya Sritunyalucksana

Shrimp have the ability to accommodate viruses in long term, persistent infections without signs of disease. Endogenous viral elements (EVE) play a role in this process probably via production of negative-sense Piwi-interacting RNA (piRNA)-like fragments. These bind with Piwi proteins to dampen viral replication via the RNA interference (RNAi) pathway. We searched a draft genome of the giant tiger shrimp (Penaeus monodon)(GenBank record JABERT000000000) for the presence of EVE related to a shrimp parvovirus originally named infectious hypodermal and hematopoietic necrosis virus (IHHNV). The shrimp draft genome contained 3 piRNA-like gene clusters containing scrambled IHHNV EVE. Two clusters were located distant from one another in linkage group 35 (LG35). Both LG35 clusters contained multiple DNA fragments with high homology (99%) to GenBank records DQ228358 and EU675312 that were both called non-infectious IHHNV Type A (IHHNV-A) when originally discovered. However, our results and those from a recent Australian P. monodon genome assembly indicate that the relevant GenBank records for IHHNV-A are sequence-assembly artifacts derived from scrambled and fragmental IHHNV-EVE. Although the EVE in the two LG35 clusters showed high homology only to IHHNV-A, the clusters were separate and distinct with respect to the arrangement (i.e., order and reading direction) and proportional content of the IHHNV-A GenBank records. We conjecture that these 2 clusters may constitute independent allele-like clusters on a pair of homologous chromosomes. The third EVE cluster was found in linkage group 7 (LG7). It contained EVE with high homology (99%) only to GenBank record AF218266 with the potential to protect shrimp against infectious IHHNV. Our results suggested the possibility of viral-type specificity in EVE clusters. Specificity is important whole EVE clusters for one viral type would be transmitted to offspring as collective hereditary units. This would be advantageous if one or more of the EVE within the cluster were protective against disease caused by the cognate virus. It would also facilitate gene editing for removal of non-protective EVE clusters or for transfer of protective EVE clusters to genetically improve existing shrimp breeding stocks that might lack them.


2021 ◽  
Author(s):  
Carlos F. Estevez-Castro ◽  
Murillo F. Rodrigues ◽  
Antinéa Babarit ◽  
Flávia Viana Ferreira ◽  
Eric Marois ◽  
...  

Mosquito borne viruses such as dengue, Zika, yellow fever and Chikungunya cause millions of infections every year. These viruses are mostly transmitted by two urban-adapted mosquito species, Aedes aegypti and Aedes albopictus, that appear to be more permissive to arbovirus infections compared to closely related species. Although mechanistic understanding remains, Aedes mosquitoes may have evolved specialized antiviral mechanisms that potentially contribute to the low impact of viral infection. Recently, we reported the identification of an Aedes specific double-stranded RNA binding protein (dsRBP), named Loqs2, that is involved in the control of infection by dengue and Zika viruses in Ae. aegypti. Loqs2 interacts with two important co-factors of the RNA interference (RNAi) pathway, Loquacious (Loqs) and R2D2, and seems to be a strong regulator of the antiviral defense. However, the origin and evolution of loqs2 remains unclear. Here, we describe that loqs2 likely originated from two independent duplications of the first dsRNA binding domain (dsRBD) of loquacious that occurred before the radiation of the Aedes Stegomya subgenus. After its origin, our analyses suggest that loqs2 evolved by relaxed positive selection towards neofunctionalization. In fact, loqs2 is evolving at a faster pace compared to other RNAi components such as loquacious, r2d2 and Dicer-2 in Aedes mosquitoes. Unlike loquacious, transcriptomic analysis showed that loqs2 expression is tightly regulated, almost restricted to reproductive tissues in Ae. aegypti and Ae. albopictus. Transgenic mosquitoes engineered to ubiquitously express loqs2 show massive dysregulation of stress response genes and undergo developmental arrest at larval stages. Overall, our results uncover the possible origin and neofunctionalization of a novel antiviral gene, loqs2, in Aedes mosquitoes that ultimately may contribute to their effectiveness as vectors for arboviruses.


2021 ◽  
Author(s):  
Mine Altinli ◽  
Mayke Leggewie ◽  
Marlis Badusche ◽  
Rashwita Gyanwali ◽  
Christina Scherer ◽  
...  

Arboviruses transmitted by mosquitoes are responsible for the death of millions of people each year. In addition to arboviruses, many insect-specific viruses (ISVs) have been discovered in mosquitoes in the last decade. ISVs, in contrast to arboviruses transmitted by mosquitoes to vertebrates, cannot replicate in vertebrate cells even when they are evolutionarily closely related to arboviruses. The alphavirus genus includes many arboviruses, although only a few ISVs have been discovered from this genus so far. Here, we investigate the interactions of a recently isolated insect-specific alphavirus, Agua-Salud alphavirus (ASALV), with its mosquito host. RNAi is one of the essential antiviral responses against arboviruses, although there is little knowledge on the interactions of RNAi with ISVs. Through knock-down of transcripts of the different key RNAi pathway (siRNA, miRNA and piRNA) proteins, we show the antiviral role of Ago2 (siRNA), Ago1 (miRNA), and Piwi4 proteins against ASALV in Aedes aegypti derived cells. ASALV replication increased in Dicer2 and Ago2 knock-out cells, confirming the antiviral role of the siRNA pathway. In infected cells, mainly ASALV-specific siRNAs are produced while piRNAs, with the characteristic nucleotide bias resulting from ping-pong amplification, are only produced in Dicer2 knock-out cells. Taken together, ASALV interactions with the mosquito RNAi response differs from arthropod-borne alphaviruses in some aspects, although they also share some commonalities. Further research is needed to understand whether the identified differences can be generalised to other insect-specific alphaviruses.


2021 ◽  
Vol 17 (12) ◽  
pp. e1010072
Author(s):  
Morgane Baldaccini ◽  
Sébastien Pfeffer

One of the first layers of protection that metazoans put in place to defend themselves against viruses rely on the use of proteins containing DExD/H-box helicase domains. These members of the duplex RNA–activated ATPase (DRA) family act as sensors of double-stranded RNA (dsRNA) molecules, a universal marker of viral infections. DRAs can be classified into 2 subgroups based on their mode of action: They can either act directly on the dsRNA, or they can trigger a signaling cascade. In the first group, the type III ribonuclease Dicer plays a key role to activate the antiviral RNA interference (RNAi) pathway by cleaving the viral dsRNA into small interfering RNAs (siRNAs). This represents the main innate antiviral immune mechanism in arthropods and nematodes. Even though Dicer is present and functional in mammals, the second group of DRAs, containing the RIG-I-like RNA helicases, appears to have functionally replaced RNAi and activate type I interferon (IFN) response upon dsRNA sensing. However, recent findings tend to blur the frontier between these 2 mechanisms, thereby highlighting the crucial and diverse roles played by RNA helicases in antiviral innate immunity. Here, we will review our current knowledge of the importance of these key proteins in viral infection, with a special focus on the interplay between the 2 main types of response that are activated by dsRNA.


2021 ◽  
Vol 17 (12) ◽  
pp. e1010119
Author(s):  
Yan Xu ◽  
Zhengwei Zhong ◽  
Yanxin Ren ◽  
Liting Ma ◽  
Zhi Ye ◽  
...  

Disease vectors such as mosquitoes and ticks play a major role in the emergence and re-emergence of human and animal viral pathogens. Compared to mosquitoes, however, much less is known about the antiviral responses of ticks. Here we showed that Asian longhorned ticks (Haemaphysalis longicornis) produced predominantly 22-nucleotide virus-derived siRNAs (vsiRNAs) in response to severe fever with thrombocytopenia syndrome virus (SFTSV, an emerging tick-borne virus), Nodamura virus (NoV), or Sindbis virus (SINV) acquired by blood feeding. Notably, experimental acquisition of NoV and SINV by intrathoracic injection also initiated viral replication and triggered the production of vsiRNAs in H. longicornis. We demonstrated that a mutant NoV deficient in expressing its viral suppressor of RNAi (VSR) replicated to significantly lower levels than wildtype NoV in H. longicornis, but accumulated to higher levels after knockdown of the tick Dicer2-like protein identified by phylogeny comparison. Moreover, the expression of a panel of known animal VSRs in cis from the genome of SINV drastically enhanced the accumulation of the recombinant viruses. This study establishes a novel model for virus-vector-mouse experiments with longhorned ticks and provides the first in vivo evidence for an antiviral function of the RNAi response in ticks. Interestingly, comparing the accumulation levels of SINV recombinants expressing green fluorescent protein or SFTSV proteins identified the viral non-structural protein as a putative VSR. Elucidating the function of ticks’ antiviral RNAi pathway in vivo is critical to understand the virus-host interaction and the control of tick-borne viral pathogens.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mary Wallace ◽  
Lynne K. Rieske

AbstractThe six-spined ips, Ips calligraphus, is a North American bark beetle that can exploit most eastern North American Pinus species and can cause mortality. Biotic and abiotic disturbances weaken trees, creating breeding substrate that promotes rapid population growth. Management historically relied on silvicultural practices, but as forests become increasingly stressed, innovative management is needed. Manipulation of the cellular RNA interference (RNAi) pathway to induce gene silencing is an emerging means of insect suppression, and is effective for some bark beetles. Quantitative PCR (qPCR) is a powerful tool for analysis of gene expression, and is essential for examining RNAi. To compare gene expression among individuals, stably expressed reference genes must be validated for qPCR. We evaluated six candidate reference genes (18s, 16s, 28s, ef1a, cad, coi) for stability under biotic (beetle sex, developmental stage, and host plant), and abiotic (temperature, photoperiod, and dsRNA exposure) conditions. We used the comprehensive RefFinder tool to compare stability rankings across four algorithms. These algorithms identified 18s, 16s, and 28s as the most stably expressed. Overall, 16s and 28s were selected as reference genes due to their stability and moderate expression levels, and can be used for I. calligraphus gene expression studies using qPCR, including those evaluating RNAi.


2021 ◽  
Vol 17 (11) ◽  
pp. e1010088
Author(s):  
Akhila Bettadapur ◽  
Samuel S. Hunter ◽  
Rene L. Suleiman ◽  
Maura C. Ruyechan ◽  
Wesley Huang ◽  
...  

While Entamoeba histolytica remains a globally important pathogen, it is dramatically understudied. The tractability of E. histolytica has historically been limited, which is largely due to challenging features of its genome. To enable forward genetics, we constructed and validated the first genome-wide E. histolytica RNAi knockdown mutant library. This library allows for Illumina deep sequencing analysis for quantitative identification of mutants that are enriched or depleted after selection. We developed a novel analysis pipeline to precisely define and quantify gene fragments. We used the library to perform the first RNAi screen in E. histolytica and identified slow growth (SG) mutants. Among genes targeted in SG mutants, many had annotated functions consistent with roles in cellular growth or metabolic pathways. Some targeted genes were annotated as hypothetical or lacked annotated domains, supporting the power of forward genetics in uncovering functional information that cannot be gleaned from databases. While the localization of neither of the proteins targeted in SG1 nor SG2 mutants could be predicted by sequence analysis, we showed experimentally that SG1 localized to the cytoplasm and cell surface, while SG2 localized to the cytoplasm. Overexpression of SG1 led to increased growth, while expression of a truncation mutant did not lead to increased growth, and thus aided in defining functional domains in this protein. Finally, in addition to establishing forward genetics, we uncovered new details of the unusual E. histolytica RNAi pathway. These studies dramatically improve the tractability of E. histolytica and open up the possibility of applying genetics to improve understanding of this important pathogen.


2021 ◽  
Author(s):  
Yao Xu ◽  
Jingyi Jiang ◽  
Xiaoju Lin ◽  
Wangpeng Shi ◽  
Chuan Cao

Locusts and grasshoppers are one of the most dangerous agricultural pests. Environmentally benign microbial pesticides are increasingly desirable for controlling locust outbreaks in fragile ecosystems. Here we use metagenomic sequencing to profile the rich viral communities in 34 grasshopper species and report 322 viruses, including 202 novel species. Most of the identified viruses are related to other insect viruses and some are targeted by antiviral RNAi pathway, indicating they infect grasshoppers. Some plant/fungi/vertebrate associated viruses are also abundant in our samples. Our analysis of relationships between host and virus phylogenies suggests that the composition of viromes is closely allied with host evolution, and there is significant phylogenetic relatedness between grasshoppers and viruses from Lispiviridae, Partitiviridae, Orthomyxoviridae, Virgaviridae and Flaviviridae. Overall, this study is a thorough exploration of viruses in grasshoppers and provide an essential evolutionary and ecological context for host-virus interaction in Acridoidea.


Sign in / Sign up

Export Citation Format

Share Document