molten carbonate fuel cell
Recently Published Documents


TOTAL DOCUMENTS

881
(FIVE YEARS 82)

H-INDEX

39
(FIVE YEARS 8)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 608
Author(s):  
Lukasz Szablowski ◽  
Olaf Dybinski ◽  
Arkadiusz Szczesniak ◽  
Jaroslaw Milewski

The paper presents a mathematical model of a molten carbonate fuel cell with a catalyst in the anode channel. The modeled system is fueled by methane. The system includes a model of the steam reforming process occurring in the anode channel of the MCFC fuel cell and the model of the cell itself. A reduced order model was used to describe the operation of the molten carbonate fuel cell, whereas a kinetic model describes the methane steam reforming. The calculations of the reforming were done in Aspen HYSYS software. Four values of the steam-to-carbon ratio (2.0, 2.5, 3.0, and 3.5) were used to analyze the performance of the reforming process. In the first phase, the reaction kinetics model was based on data from the literature.


2022 ◽  
Vol 14 (1) ◽  
pp. 533
Author(s):  
Alberto Fichera ◽  
Samiran Samanta ◽  
Rosaria Volpe

This study aims to propose the repowering of an existing Italian natural-gas fired combined cycle power plant through the integration of Molten Carbonate Fuel Cells (MCFC) downstream of the gas turbine for CO2 capture and to pursuit an exergetic analysis of the two schemes. The flue gases of the turbine are used to feed the cathode of the MCFC, where CO2 is captured and transported to the anode while generating electric power. The retrofitted plant produces 787.454 MW, in particular, 435.29 MW from the gas turbine, 248.9 MW from the steam cycle, and 135.283 MW from the MCFC. Around 42.4% of the exergy destruction has been obtained, the majority belonging to the combustion chamber and, in minor percentages, to the gas turbine and the MCFC. The overall net plant efficiency and net exergy efficiency are estimated to be around 55.34 and 53.34%, respectively. Finally, the specific CO2 emission is around 66.67 kg/MWh, with around 2 million tons of carbon dioxide sequestrated.


Author(s):  
Jarosław Milewski ◽  
Karol Cwieka ◽  
Arkadiusz Szczęśniak ◽  
Łukasz Szabłowski ◽  
Tomasz Wejrzanowski ◽  
...  

2021 ◽  
Vol 13 (23) ◽  
pp. 13187
Author(s):  
Rahmad Syah ◽  
Afshin Davarpanah ◽  
Mahyuddin K. M. Nasution ◽  
Faisal Amri Tanjung ◽  
Meysam Majidi Nezhad ◽  
...  

In this study, an integrated molten carbonate fuel cell (MCFC), thermoelectric generator (TEG), and regenerator energy system has been introduced and evaluated. MCFC generates power and heating load. The exit fuel gases of the MCFC is separated into three sections: the first section is transferred to the TEG to generate more electricity, the next chunk is conducted to a regenerator to boost the productivity of the suggested plant and compensate for the regenerative destructions, and the last section enters the surrounding. Computational simulation and thermodynamic evaluation of the hybrid plant are carried out utilizing MATLAB and HYSYS software, respectively. Furthermore, a thermoeconomic analysis is performed to estimate the total cost of the product and the system cost rate. The offered system is also optimized using multi-criteria genetic algorithm optimization to enhance the exergetic efficiency while reducing the total cost of the product. The power generated by MCFC and TEG is 1247.3 W and 8.37 W, respectively. The result explicates that the provided electricity and provided efficiency of the suggested plant is 1255.67 W and 38%, respectively. Exergy inquiry outcomes betokened that, exergy destruction of the MCFC and TEG is 13,945.9 kW and 262.75 kW, respectively. Furthermore, their exergy efficiency is 68.22% and 97.31%, respectively. The impacts of other parameters like working temperature and pressure, thermal conductance, the configuration of the advantage of the materials, etc., on the thermal and exergetic performance of the suggested system are also evaluated. The optimization outcomes reveal that in the final optimum solution point, the exergetic efficiency and total cost of the product s determined at 70% and 30 USD/GJ.


Author(s):  
Dohyeong Kim ◽  
Hyung Tae Kim ◽  
Shin Ae Song ◽  
Kiyoung Kim ◽  
Sung Nam Lim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document