ISRN Ecology
Latest Publications


TOTAL DOCUMENTS

59
(FIVE YEARS 0)

H-INDEX

10
(FIVE YEARS 0)

Published By Hindawi (International Scholarly Research Network)

2090-4622, 2090-4614

ISRN Ecology ◽  
2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Roberto Pizzolotto ◽  
Pietro Brandmayr

The biogeographical peculiarity of a given geographical area is directly linked to the number of its endemic species. This paper aims to formulate an index directly linked to the biogeographical peculiarity of an area. A graphical model and an index of the biogeographical peculiarity are proposed, based on a cumulative sum (i.e., including all the amounts that were added previously). An example of the computations is proposed, based on the number of different types of geographical ranges (i.e., chorotypes) characterizing two different ecosystems; their biogeographical peculiarity of was evaluated on the basis of presence versus absence of carabid species. Both the graphical model and the index mirrored the different faunistic compositions of the ecosystems, because the index reached a higher value where more endemic species have been found. Our investigation has found a new method for evaluating the biogeographical peculiarity of a given area or biota in a simple way. The index could be used for either conservation biogeography (e.g., monitoring of biotic homogenization) or for theoretical studies integrating ecology and biogeography.


ISRN Ecology ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Paolo Casula ◽  
Mauro Nannini

Evaluating the structure of enemy biodiversity effects on prey in agroecosystems can provide insights into biological pest control functioning. With this aim, theoretical models that describe biological mechanisms underlying prey suppression can be developed and confronted with experimental data by means of model selection. Here, we confront multiplicative risk models to evaluate the structure of multiple predator effects on the whitefly Trialeurodes vaporariorum provided in tomatoes by two spiders (Oxyopes lineatus and Pityohyphantes phrygianus) and two mirids (Nesidiocoris tenuis and Macrolophus melanotoma). Biologically meaningful parameters retained in the best models showed that several predator traits differently affected pest control: species-specific per capita predation rates, prey use extent, different type of interactions between predators, and the response of predator species to prey density and environmental temperature. Even from a limited perspective of single-pest control and short term experiment, this study suggests that assembly of the four predator species results in predator complementarity across prey life stages and density, interactions of prey and predators with environmental conditions, and interactions between predators that do not result in whitefly control disruption. Such information about enemy biodiversity and whitefly control functioning can drive hypotheses about sustainable pest management options in local agroecosystems.


ISRN Ecology ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Haiyan Nie ◽  
Mingcan Yao ◽  
Jike Liu

Which factor determines animal aggressivity? Wynn-Edwards proposed the hypothesis that aggressive level increases with population density; Adams and Mesterton-Gibbons proposed the hypothesis that body weight is an indicator of animal aggressivity; however, Smith and Price hypothesized that aggression level varied with external conditions; that is, the population lived in the most unfavorable environment demonstrated the highest average aggression level, and the population that lived under the most favorable external conditions demonstrated the lowest average aggression level. In this paper, we tested these three hypotheses by manipulating enclosed root vole (Microtus oeconomus) populations under different food and predation treatments and observed their aggressive behavior. Aggressive behavior was measured by matching mice in a neutral arena. The experimental results supported Smith and Price’s hypothesis and Adams and Mesterton-Gibbons’s hypothesis; however, they did not support Wynn-Edwards’ hypothesis. Moreover, we found that reproductively active individuals were more aggressive. We concluded that the growth of population density did not cause or otherwise bring about increased aggressive behavior of root voles, but the external factors (predation and food supply) and physical factors (body weight and reproductive condition) were significantly correlated with aggression levels in a root vole population.


ISRN Ecology ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Youhua Chen

Distribution patterns of alien species in nonnative ranges might be driven by a combination of various mechanisms, including phylogenetic history, competition for resource, environmental filtering, and so on. Both phylogenetic and functional limitations might work synergistically to determine the distribution of alien species. In this report, by utilizing the information of provincial distribution, functional attributes, and phylogeny for 95 alien species of China, the corresponding phylogenetic and functional community structures are evaluated. The results show that introduction pathway, life form, and flowering time of alien plants of China processed significant phylogenetic clustering patterns, while both the origin of distribution and reproduction mode of alien species showed phylogenetic overdispersion patterns, as revealed by NRI/NTI indices. The phylogenetic signal tests using Pagel’s statistic and Blomberg et al.’s statistic further verified the previous patterns, even though there are some inconsistencies. Through partial Mantel test, it is found that compositional patterns of alien plant community were mainly affected by phylogenetic limitation but not functional limitation. Conclusively, phylogeny plays a more important role in structuring provincial distribution of alien plants in China.


ISRN Ecology ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
R. Jayakumar ◽  
K. K. N. Nair

Study Aim. To assess species diversity and tree regeneration patterns of different vegetation types of Western Ghats, India. Rarefaction was used to estimate species diversity of different vegetation types. One-way ANOVA was used to test for differences in tree density and basal area of different vegetation types. Sorenson index of similarity was used to calculate change in species composition between mature trees and regenerating individuals. Results showed that species diversity and regeneration pattern of trees differ in different vegetation types of the forest landscape. Species-area and species-individual accumulation curve (rarefaction) against equal-sized sampling area in different vegetation types showed that species heterogeneity was higher in vegetation types at mid elevations while their abundance was higher in vegetation types at higher elevations. All the vegetation types of the study area were heterogeneously distributed. Tree regeneration was higher in species rich vegetation type with no sign of human disturbances. Change in species composition across mature and regenerating phase was more frequent in disturbed forest as compared to undisturbed or less disturbed forests. New entry species occur in all the vegetation types.


ISRN Ecology ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Yasuhiro Sato ◽  
Koh-Ichi Takakura ◽  
Sachiko Nishida ◽  
Takayoshi Nishida

Here we document a novel phenomenon that, based on field observations in central Japan, cleistogamous flowers (or closed flowers) of an annual herb Lamium amplexicaule were dominantly expressed near an alien congener L. purpureum. The proportion of cleistogamous flowers in an individual L. amplexicaule increased with the frequency of L. purpureum occurring in the same patches but did not increase with the total density of Lamium plants and their own size. To confirm the consistency of the effect of the coexisting alien species, we assessed the cleistogamous frequency at the patch level for three other populations. In these populations as well, the proportion of L. amplexicaule producing cleistogamous flowers increased with the frequency of L. purpureum. Our transplant experiment at one site found no effect of the nearby presence of L. purpureum on the seed set of L. amplexicaule and therefore did not support the hypothesis that the adverse effect on the reproduction via interspecific pollination favored cleistogamous flowers that accepted no external pollen. Further studies must be conducted to examine the negative interactions between the related species before and after seed development.


ISRN Ecology ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Daniela J. Shebitz ◽  
William Eaton

Succession following deforestation in Neotropical forests has been investigated extensively, yet rarely have studies connected nutrient dynamics with vegetation. This study was conducted in lowland wet forests of Maquenque, Costa Rica. The objectives were (1) to compare carbon (C), nitrogen (N), and phosphorus (P) characteristics and understory vegetation diversity between regenerating forests and primary forests; and (2) to use these variables to evaluate P. macroloba’s successional role. Four 300 m2 plots were established in primary and secondary forests where P. macroloba was the dominant N-fixing tree. Soil and vegetation data were collected from 2008 to 2010. Values of indicators of C, N, and P cycle activity were generally greater in primary than in secondary forest soils. Efficiency of organic C use and the relative contribution of respiration and organic C to soil biomass were also greater in the primary forest. These trends corresponded with greater richness, biomass, and cover of total and leguminous plant species, greater volume of P. macroloba in primary stands, and greater density of P. macroloba in secondary stands. As cleared regions of former primary forest regenerate, P. macroloba is the important dominant N-fixing tree and a critical driver of C, N, and P recuperation and ecosystem recovery.


ISRN Ecology ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Eric Marcon ◽  
Stéphane Traissac ◽  
Gabriel Lang

Ripley’s K function is the classical tool to characterize the spatial structure of point patterns. It is widely used in vegetation studies. Testing its values against a null hypothesis usually relies on Monte-Carlo simulations since little is known about its distribution. We introduce a statistical test against complete spatial randomness (CSR). The test returns the P value to reject the null hypothesis of independence between point locations. It is more rigorous and faster than classical Monte-Carlo simulations. We show how to apply it to a tropical forest plot. The necessary R code is provided.


ISRN Ecology ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Sarah Cunze ◽  
Marion Carmen Leiblein ◽  
Oliver Tackenberg

Ambrosia artemisiifolia L., native to North America, is a problematic invasive species, because of its highly allergenic pollen. The species is expected to expand its range due to climate change. By means of ecological niche modelling (ENM), we predict habitat suitability for A. artemisiifolia in Europe under current and future climatic conditions. Overall, we compared the performance and results of 16 algorithms commonly applied in ENM. As occurrence records of invasive species may be dominated by sampling bias, we also used data from the native range. To assess the quality of the modelling approaches we assembled a new map of current occurrences of A. artemisiifolia in Europe. Our results show that ENM yields a good estimation of the potential range of A. artemisiifolia in Europe only when using the North American data. A strong sampling bias in the European Global Biodiversity Information Facility (GBIF) data for A. artemisiifolia causes unrealistic results. Using the North American data reflects the realized European distribution very well. All models predict an enlargement and a northwards shift of potential range in Central and Northern Europe during the next decades. Climate warming will lead to an increase and northwards shift of A. artemisiifolia in Europe.


ISRN Ecology ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Christopher F. Steiner

Experiments show that consumer diversity can have important effects on the control of prey diversity and abundance. However, theory also indicates that the strength of consumer effects on such properties will vary depending on system productivity and disturbance regime. Using a laboratory-based system composed of ciliate consumers and bacterial prey, I explored the interactive effects of productivity, disturbance, and consumer diversity on prey diversity and trophic-level abundance. Consumer diversity had productivity-dependent effects on bacterial prey that were consistent with theoretical expectations. At low productivity, increasing consumer diversity reduced prey abundance while at high productivity no effects were detected due to compensatory responses among bacteria. In contrast, consumer diversity had weak effects on prey diversity at low productivity but significantly depressed prey diversity at high productivity. Disturbance on consumers enhanced prey diversity but did not alter consumer diversity effects on prey. These results indicate that consumer diversity may play an important role in the regulation of prey communities, but the strength of this effect varies with system productivity.


Sign in / Sign up

Export Citation Format

Share Document