Journal of Sport Rehabilitation
Latest Publications


TOTAL DOCUMENTS

1693
(FIVE YEARS 578)

H-INDEX

49
(FIVE YEARS 7)

Published By Human Kinetics

1543-3072, 1056-6716

2021 ◽  
pp. 1-5
Author(s):  
Jared Patus

Clinical Scenario: Traditional loading (TL) is a common technique to employ when engaging in countermovement jumps (CMJ). Accentuated eccentric loading (AEL) is a newer modality that is being explored for acute CMJ performance. Focused Clinical Question: In adult, resistance-trained males, will AEL have a superior impact on acute CMJ performance compared to TL? Summary of Key Findings: The literature was searched for studies that examined the influence of AEL on acute CMJ performance compared to a TL protocol. TL was defined as any loading condition that utilized an equivalent resistance during both the eccentric and concentric contractions. Three studies met the inclusion and exclusion criteria, and were identified and included in the critically appraised topic. Each of the 3 studies found that various AEL conditions were either equal to or better than TL when examining subsequent CMJ performance. In no specific CMJ outcome measure was TL deemed to have a greater impact than AEL. Clinical Bottom Line: AEL provides more favorable acute CMJ performance than TL in adult, resistance-trained males. Strength of Recommendation: Consistent findings from 2 randomized crossover studies and one repeated-measured design investigation suggest level 2b evidence to support AEL as an ideal protocol for acute CMJ performance.


2021 ◽  
pp. 1-6
Author(s):  
Nilüfer Kablan ◽  
Nuray Alaca ◽  
Yaşar Tatar

Context: Fast and adequate recovery after exercise and activity is important for increasing performance and preventing injuries. Inadequate recovery usually causes changes in the biomechanical and viscoelastic properties of the muscle. Objective: To compare the immediate effect of petrissage massage (PM) and manual lymph drainage (MLD) following submaximal exercise on the biomechanical and viscoelastic properties of the rectus femoris muscle in healthy women. Design: Cross-sectional, repeated-measures. Setting: Marmara University. Participants: 18 healthy female students. Intervention(s): Following the submaximal quadriceps strengthening exercise performed in 3 sets of 8 repetitions with intensity of 75% of 1 maximum repetition, participants’ right leg received a 5-minute PM (PM group) and the contralateral leg received a 5-minute MLD application (MLD group). Main Outcome Measures: Skin temperature was measured using P45 thermographic thermal camera (Flir System; ThermaCAM, Danderyd, Sweden), and muscle tone, biomechanical, and viscoelastic features were measured with a myometer (Myoton AS, Tallinn, Estonia) at baseline, immediately postexercise, post-PM/MLD application, and 10 minutes postexercise. Results: In the PM group, the tonus (P = .002) and stiffness (P < .001) values measured after the massage and at the end of the 10-minute resting period were found to be statistically different than those measured right after the exercise (P < .05). Relaxation time and creep values at all measurement times were significantly different (P < .05). In the MLD group, it was observed the tonus (P < .001), stiffness (P = .025), and relaxation time (P < .01) values decreased significantly after the MLD compared with the values measured after the exercise; however, the creep value was found to be significantly different in all measurements (P < .05). Conclusion: PM and MLD reduce passive tissue stiffness and improve the extent of muscle extensibility over time against the muscle tensile strength. PM and MLD are therapeutic methods that can be used to support tissue recovery after exercise and prevent injuries.


2021 ◽  
pp. 1-6
Author(s):  
Adam L. Haggerty ◽  
Janet E. Simon ◽  
Dustin R. Grooms ◽  
Jeffrey A. Russell

Context: Proprioception is an individual’s awareness of body position in 3-dimensional space. How proprioceptive acuity changes under varying conditions such as joint position, load, and concentric or eccentric contraction type is not well understood. In addition, a limitation of the variety of techniques to assess proprioception is the lack of clinically feasible methods to capture proprioceptive acuity. The purpose of this study was to implement a readily available instrument, a smartphone, in the clinical evaluation of knee active joint position sense and to determine how joint angle, joint loading, and quadriceps contraction type affect an individual’s active joint position sense. Design: Cross-over study. Methods: Twenty healthy, physically active university participants (10 women and 10 men: 21.4 [2.0] y; 1.73 [0.1] m; 70.9 [14.3] kg) were recruited. Individuals were included if they had no neurological disorder, no prior knee surgery, and no recent knee injury. The participants were given a verbal instruction to locate a target angle and then were tasked with reproducing the target angle without visual or verbal cues. An accelerometer application on a smartphone was used to assess the angle to the nearest tenth of a degree. Three variables, each with 2 levels, were analyzed in this study: load (weighted and unweighted), contraction type (eccentric and concentric), and joint position (20° and 70°). A repeated-measures analysis of variance was conducted to assess the within-subjects factors of load, contraction, and position. Results: A significant difference of 0.50° (0.19°) of greater error with eccentric versus concentric contraction (P = .02) type was identified. In addition, a significant interaction was found for contraction × position, with a mean increase in error of 0.98° (0.33°) at the 20° position when contracting eccentrically (P = .03). Conclusions: Contraction type, specifically eccentric contraction at 20°, showed significantly greater error than concentric contraction. This suggests that, during eccentric contractions of the quadriceps, there may be decreased proprioceptive sensitivity compared with concentric contractions.


2021 ◽  
pp. 1-7
Author(s):  
Lucas Ettinger ◽  
Matthew Shaprio ◽  
Andrew Karduna

Context: Shoulder muscle activation in patients with subacromial impingement is highly cited and variable in the literature. Differences between studies could be due to artifacts introduced by normalization practices in the presence of pain. Ultimately, this lack of knowledge pertaining to pathogenesis limits the clinical treatment and restoration of muscular function. Design: A total of 21 patients with stage 2 subacromial impingement and 21 matched controls were recruited for EMG testing of their affected shoulder during an arm elevation task. The patients were tested before and after receiving an injection to their subacromial bursa. Methods: The EMG from 7 shoulder muscles were measured before and after treatment during humeral motion in the scapular plane. Results: Our findings indicate an increase in anterior deltoid, middle deltoid, and upper trapezius activity following the injection; further, this trend extended to the controls. The control subjects had a greater activation of the latissimus dorsi at peak arm elevation when compared with the patient group postinjection. Conclusions: Our results indicate that a reduction in subacromial pain is associated with changes in shoulder muscle recruitment, primarily of the deltoid. This change in deltoid activity may lend evidence to rotator cuff function in patients without rotator cuff tears.


2021 ◽  
pp. 1-6
Author(s):  
Shane P. Murphy ◽  
Zach B. Barrons ◽  
Jeremy D. Smith

Context: The quality of running mechanics is often characterized by limb pattern symmetry and used to support clinical decisions throughout the rehabilitation of lower-extremity injuries. It is valuable to ensure that gait analyses provide stable measures while not asking an individual to complete an excessive number of running strides. The present study aimed to determine the minimum number of strides required to establish a stable mean symmetry index (SMSI) of discrete-level measures of spatiotemporal parameters, joint kinematics, and joint kinetics. Further, the study aimed to determine if differences occurred between random and consecutive strides for directional and absolute symmetry indices. Design: Descriptive laboratory study. Methods: A sequential average was used to determine how many strides were required to achieve a SMSI within a 60-second trial. Multiple 2-factor repeated-measure analysis of variances were used to determine if differences between bins of strides and symmetry calculations were significantly different. Results: A median SMSI was achieved in 15 strides for all biomechanical variables. There were no significant differences (P > .05) found between consecutive and random bins of 15 strides within a 60-second trial. Although there were significant differences between symmetry calculation values for most variables (P < .05), there appeared to be no systematic difference between the numbers of strides required for stable symmetry for either index. Conclusions: As 15 strides were sufficient to achieve a SMSI during running, a continued emphasis should be placed on the number of strides collected when examining interlimb symmetry.


2021 ◽  
pp. 1-6
Author(s):  
Masahiro Kuniki ◽  
Yoshitaka Iwamoto ◽  
Daiki Yamagiwa ◽  
Nobuhiro Kito

Context: Core stability is important for preventing injury and improving performance. Although various tests for evaluating core stability have been reported to date, information on their relationship and the effect of gender differences is limited. This study aimed to (1) identify correlations among the 3 core stability tests and to examine the validity of each test and (2) identify gender differences in the test relationship and determine whether gender influenced test selection. Design: Cross-sectional study. Methods: Fifty-one healthy volunteers (27 men and 24 women) participated in the study. The participants underwent the following 3 tests: Sahrmann Core Stability Test (SCST), the lumbar spine motor control tests battery (MCBT), and Y Balance Test (YBT). Each parameter was analyzed according to all parameters and gender using the Spearman rank correlation coefficient. Results: Overall, there was a strong positive correlation between SCST and MCBT and moderate positive correlations between SCST and YBT and between MCBT and YBT. Conversely, gender-specific analyses revealed no significant correlations between YBT and SCST and between YBT and MCBT in women, although significantly strong correlations were found among all tests in men. Conclusion: Although these 3 tests evaluated interrelated functions and may be valid as core stability tests, the results should be carefully interpreted when performing YBT in women.


2021 ◽  
pp. 1-6
Author(s):  
Toshiaki Soga ◽  
Taspol Keerasomboon ◽  
Kei Akiyama ◽  
Norikazu Hirose

Context: This study aimed to examine the differences in electromyographic (EMG) activity of the biceps femoris long head (BFlh) and semitendinosus (ST) muscles, break-point angle (BPA), and the angle at peak BFlh EMG activity between bilateral and unilateral Nordic hamstring exercise (NHE) on a sloped platform. Design: This study was designed as a case-control study. Methods: Fourteen men participated in the study. The participants initially performed maximum voluntary isometric contraction (MVIC) on the prone leg curl to normalize the peak hamstring EMG amplitude as the %MVIC. Then, participants were randomized to perform the following 3 variations of NHE: bilateral (N40) or unilateral (N40U) NHE with a platform angle of 40°, and unilateral NHE with a platform angle of 50° (N50U). The EMG activities of the BFlh and ST and the knee flexion angle during the NHE variations were recorded to calculate the EMG activity of the BFlh and ST in terms of the %MVIC, the angle at peak BFlh EMG, and BPA. Results: The BFlh %MVIC was significantly higher in N40U (P < .05) and N50U (P < .05) than in N40. A significant difference in BFlh %MVIC and ST %MVIC was observed between N40U (P < .05) and N50U (P < .05). The mean values of BPA and the angle at peak BFlh EMG were <30° for all NHE variations. Conclusions: In the late swing phase of high-speed running, BFlh showed higher EMG activity; thus, unilateral NHE may be a specific hamstring exercise for hamstring injury prevention.


2021 ◽  
pp. 1-7
Author(s):  
Guillaume Mirouse ◽  
Houssam Bouloussa ◽  
Hervé Silbert ◽  
Emad Lotfalizadeh ◽  
Arnaud Dubory

Context: Diaphyseal tibiofibular synostosis (DTS) is a rare pathology with unknown origin especially occurring in intensive sport athletes. No therapeutic guideline has been well established in the literature. Case Presentation: A rare case of DTS in a 26-year-old professional rugby player has been described. A 5-month exhaustive conservative treatment including physiotherapy and oral medication has been achieved but failed. Management and Outcomes: Following the conservative treatment failure, the DTS has been widely removed including the adjacent interosseous membrane, and the patient could return to competition at the same level after 5 months of convalescence. No recurrence has been revealed at a 35-month follow-up at least. Conclusion: In accordance with the literature data and even if the pathophysiology remains obscure, resection of DTS seems to be the adapted treatment to allow and to reduce professional athletes’ recovery time at the same sport level. The resection including a part of the tibiofibular interosseous membrane could avoid the occurrence of recurrence. Conservative treatment should be reserved for senior patients with a low sport activity.


2021 ◽  
pp. 1-6
Author(s):  
Afsaneh Moosaei Saein ◽  
Ziaeddin Safavi-Farokhi ◽  
Atefeh Aminianfar ◽  
Marzieh Mortezanejad

Context: Plantar fasciitis (PF) is a common and devastating disease. Despite different treatments, there is no clear evidence for the effect of these treatments on PF. One of the therapy methods used in physiotherapy is dry needling (DN). So the purpose of this study is to investigate the effect of DN on the pain and range of motion of the ankle joint and plantar fascia thickness in subjects with PF who are suffering from the trigger points of the gastrocnemius and soleus muscles. Methods: In this study, 20 volunteer females with PF were randomly assigned into DN treatment and control groups. Measurements were range of motion in dorsiflexion and plantar flexion, plantar fascia thickness, and visual analog scale measured before, immediately, and 1 month after the end of the intervention in both groups. Results: There were significant differences in the plantar fascia thickness and visual analog scale between the 2 groups. Plantar fascia thickness (P = .016) and visual analog scale (P = .03) significantly decreased in the treatment group. However, there was no significant difference in plantar flexion (P = .582) and dorsiflexion range of motion (P = .173) between groups. Conclusion: The result of this study showed that DN can reduce pain and plantar fascia thickness in women with PF who are suffering from trigger points of the gastrocnemius and soleus muscles. Level of evidence: Level 1, randomized controlled trial.


2021 ◽  
pp. 1-6
Author(s):  
Raki Kawama ◽  
Masamichi Okudaira ◽  
Hirohiko Maemura ◽  
Satoru Tanigawa

Context: Strength deficits of the hamstrings following sports injuries decrease athletic performance and increase the risk of injury recurrence. Previous studies have shown a high correlation between the muscular strength during hip-extension and knee-flexion and total muscle size of the hamstrings. However, it remains unclear which region of the individual hamstring muscles is closely associated with muscular strength. Objective: To investigate the relationship between the size of each region of the individual hamstring muscles and muscular strength during hip extension and knee flexion. Design: Within-subject repeated measures. Setting: University laboratory. Participants: Twenty healthy young male volunteers who regularly engaged in sports activities. Outcome Measures: Anatomical cross-sectional areas were acquired from the proximal, middle, and distal regions of the biceps femoris long head, biceps femoris short head, semitendinosus, and semimembranosus. Hip-extension and knee-flexion strength were measured during maximal voluntary isometric and concentric contractions (angular velocities of 60°/s and 180°/s). Results: The anatomical cross-sectional area of the distal regions in biceps femoris long head (r = .525–.642) and semitendinosus (r = .567) were significantly correlated with hip-extension strength under all conditions and only at an angular velocity of 180°/s, respectively. Meanwhile, anatomical cross-sectional areas of the distal regions in biceps femoris short head (r = .587–.684) and semimembranosus (r = .569–.576) were closely associated with knee-flexion strength under all conditions. Conclusion: These results suggest that muscle size in the distal regions of biceps femoris long head and semitendinosus greatly contributes to the production of hip-extension strength, whereas that of biceps femoris short head and semimembranosus significantly contributes to the generation of knee-flexion strength. These findings could be useful for designing training and rehabilitation programs to efficiently improve strength deficits following sports injuries such as strain injury and anterior cruciate ligament tears.


Sign in / Sign up

Export Citation Format

Share Document