In this paper, we devoted a design under uncertainty of a four-echelon supply chain network including multiple suppliers, multiple plants, multiple distributors and multiple customers. The proposed model is a bi-objective mixed integer linear programming which considers several constraints and aims to minimize the total costs including the procurement, production, storage and distribution costs as well as to maximize on-time deliveries (OTD). To bring the model closer to real-world planning problems, the objective function coefficients (e.g. procurement cost, production cost, inventory holding and transport costs) and other parameters (e.g., demand, production capacity and safety stock level), are all considered triangular fuzzy numbers. Besides, a hybrid mathematical model-based on credibility approach is constructed for the problem, i.e., expected value and chance constrained models. Moreover, to build the crisp equivalent model, we use different property of the credibility measure. The resulted crisp equivalent model is a bi-objective mixed integer linear programs (BOMILP). To transform this crisp BOMILP into a single objective mixed integer linear programs (MILP) model, we apply three different aggregation functions. Finally, numerical results are reported for a real case study to demonstrate the efficiency and applicability of the proposed model.